VisionMol: a novel virtual reality tool for protein molecular structure visualization and manipulation.

Xin Wang, Yicheng Zhuang, Wenrui Liang, Haoyang Wen, Zhencong Cai, Yujia He, Yuxi Su, Wei Qin, Yuanzhe Cai, Lixin Liang, Bingding Huang
{"title":"VisionMol: a novel virtual reality tool for protein molecular structure visualization and manipulation.","authors":"Xin Wang, Yicheng Zhuang, Wenrui Liang, Haoyang Wen, Zhencong Cai, Yujia He, Yuxi Su, Wei Qin, Yuanzhe Cai, Lixin Liang, Bingding Huang","doi":"10.1093/bioinformatics/btaf118","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation & results: </strong>Virtual reality (VR) technology holds significant potential for applications in biomedicine, particularly in the visualization and manipulation of protein molecular structures. To facilitate the study of protein molecules and enable the state-of-the-art VR hardware, we developed a novel VR software named VisionMol, which allows users to engage in immersive exploration and analysis of 3D molecular structures using a range of VR platforms (such as Rhino X Pro, Meta's Oculus Quest Pro/3) as well as personal computers. Built on the Unity engine and programmed using C#, VisionMol incorporates custom scripts to enable a variety of molecular operations. Users can rotate, scale, and translate molecular models using gestures, controllers, or other input devices. Furthermore, VisionMol offers rich visualization and interactive features, including multi-model molecular display, distance measurement between molecular components, and molecular alignment and docking.</p><p><strong>Summary: </strong>These capabilities facilitate a more intuitive understanding of molecular interactions and chemical properties. The real-time interactive effects and clear visual representations allow users to delve deeper into the relationships between molecular structures and their properties, thereby accelerating research progress and promoting scientific discovery. We believe that this VR-based protein molecule analysis has significant application value in several fields, including biomedicine, life science education, drug design and optimization, biotechnology, and engineering applications.</p><p><strong>Availability and implementation: </strong>The code is at https://github.com/WangLabforComputationalBiology/VisionMol. The v1.1 code (for Oculus Quest) could also be found at https://doi.org/10.5281/zenodo.14705790. The v1.0 code (for Rhino X Pro) could also be found at https://doi.org/10.5281/zenodo.14865216. Detailed documentation could be found at https://visionmol.surge.sh/#/en-us/README.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation & results: Virtual reality (VR) technology holds significant potential for applications in biomedicine, particularly in the visualization and manipulation of protein molecular structures. To facilitate the study of protein molecules and enable the state-of-the-art VR hardware, we developed a novel VR software named VisionMol, which allows users to engage in immersive exploration and analysis of 3D molecular structures using a range of VR platforms (such as Rhino X Pro, Meta's Oculus Quest Pro/3) as well as personal computers. Built on the Unity engine and programmed using C#, VisionMol incorporates custom scripts to enable a variety of molecular operations. Users can rotate, scale, and translate molecular models using gestures, controllers, or other input devices. Furthermore, VisionMol offers rich visualization and interactive features, including multi-model molecular display, distance measurement between molecular components, and molecular alignment and docking.

Summary: These capabilities facilitate a more intuitive understanding of molecular interactions and chemical properties. The real-time interactive effects and clear visual representations allow users to delve deeper into the relationships between molecular structures and their properties, thereby accelerating research progress and promoting scientific discovery. We believe that this VR-based protein molecule analysis has significant application value in several fields, including biomedicine, life science education, drug design and optimization, biotechnology, and engineering applications.

Availability and implementation: The code is at https://github.com/WangLabforComputationalBiology/VisionMol. The v1.1 code (for Oculus Quest) could also be found at https://doi.org/10.5281/zenodo.14705790. The v1.0 code (for Rhino X Pro) could also be found at https://doi.org/10.5281/zenodo.14865216. Detailed documentation could be found at https://visionmol.surge.sh/#/en-us/README.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信