Controlling tissue size by active fracture.

ArXiv Pub Date : 2025-03-05
Wei Wang, Brian A Camley
{"title":"Controlling tissue size by active fracture.","authors":"Wei Wang, Brian A Camley","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Groups of cells, including clusters of cancerous cells, multicellular organisms, and developing organs, may both grow and break apart. What physical factors control these fractures? In these processes, what sets the eventual size of clusters? We develop a framework for understanding cell clusters that can fragment due to cell motility using an active particle model. We compute analytically how the break rate of cell-cell junctions depends on cell speed, cell persistence, and cell-cell junction properties. Next, we find the cluster size distributions, which differ depending on whether all cells can divide or only the cells on the edge of the cluster divide. Cluster size distributions depend solely on the ratio of the break rate to the growth rate - allowing us to predict how cluster size and variability depend on cell motility and cell-cell mechanics. Our results suggest that organisms can achieve better size control when cell division is restricted to the cluster boundaries or when fracture can be localized to the cluster center. Our results link the general physics problem of a collective active escape over a barrier to size control, providing a quantitative measure of how motility can regulate organ or organism size.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Groups of cells, including clusters of cancerous cells, multicellular organisms, and developing organs, may both grow and break apart. What physical factors control these fractures? In these processes, what sets the eventual size of clusters? We develop a framework for understanding cell clusters that can fragment due to cell motility using an active particle model. We compute analytically how the break rate of cell-cell junctions depends on cell speed, cell persistence, and cell-cell junction properties. Next, we find the cluster size distributions, which differ depending on whether all cells can divide or only the cells on the edge of the cluster divide. Cluster size distributions depend solely on the ratio of the break rate to the growth rate - allowing us to predict how cluster size and variability depend on cell motility and cell-cell mechanics. Our results suggest that organisms can achieve better size control when cell division is restricted to the cluster boundaries or when fracture can be localized to the cluster center. Our results link the general physics problem of a collective active escape over a barrier to size control, providing a quantitative measure of how motility can regulate organ or organism size.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信