mastR: An R Ppackage for Automated Identification of Tissue-Specific Gene Signatures in Multi-Group Differential Expression Analysis.

Jinjin Chen, Ahmed Mohamed, Dharmesh D Bhuva, Melissa J Davis, Chin Wee Tan
{"title":"mastR: An R Ppackage for Automated Identification of Tissue-Specific Gene Signatures in Multi-Group Differential Expression Analysis.","authors":"Jinjin Chen, Ahmed Mohamed, Dharmesh D Bhuva, Melissa J Davis, Chin Wee Tan","doi":"10.1093/bioinformatics/btaf114","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Biomarker discovery is important and offers insight into potential underlying mechanisms of disease. While existing biomarker identification methods primarily focus on single cell RNA sequencing (scRNA-seq) data, there remains a need for automated methods designed for labeled bulk RNA-seq data from sorted cell populations or experiments. Current methods require curation of results or statistical thresholds and may not account for tissue background expression. Here we bridge these limitations with an automated marker identification method for labeled bulk RNA-seq data that explicitly considers background expressions.</p><p><strong>Results: </strong>We developed mastR, a novel tool for accurate marker identification using transcriptomic data. It leverages robust statistical pipelines like edgeR and limma to perform pairwise comparisons between groups, and aggregates results using rank-product-based permutation test. A signal-to-noise ratio approach is implemented to minimize background signals. We assessed the performance of mastR-derived NK cell signatures against published curated signatures and found that the mastR-derived signature performs as well, if not better than the published signatures. We further demonstrated the utility of mastR on simulated scRNA-seq data and in comparison with Seurat in terms of marker selection performance.</p><p><strong>Availability: </strong>mastR is freely available from https://bioconductor.org/packages/release/bioc/html/mastR.html. A vignette and guide are available at https://davislaboratory.github.io/mastR. All statistical analyses were carried out using R (version ≥ 4.3.0) and Bioconductor (version ≥3.17).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Biomarker discovery is important and offers insight into potential underlying mechanisms of disease. While existing biomarker identification methods primarily focus on single cell RNA sequencing (scRNA-seq) data, there remains a need for automated methods designed for labeled bulk RNA-seq data from sorted cell populations or experiments. Current methods require curation of results or statistical thresholds and may not account for tissue background expression. Here we bridge these limitations with an automated marker identification method for labeled bulk RNA-seq data that explicitly considers background expressions.

Results: We developed mastR, a novel tool for accurate marker identification using transcriptomic data. It leverages robust statistical pipelines like edgeR and limma to perform pairwise comparisons between groups, and aggregates results using rank-product-based permutation test. A signal-to-noise ratio approach is implemented to minimize background signals. We assessed the performance of mastR-derived NK cell signatures against published curated signatures and found that the mastR-derived signature performs as well, if not better than the published signatures. We further demonstrated the utility of mastR on simulated scRNA-seq data and in comparison with Seurat in terms of marker selection performance.

Availability: mastR is freely available from https://bioconductor.org/packages/release/bioc/html/mastR.html. A vignette and guide are available at https://davislaboratory.github.io/mastR. All statistical analyses were carried out using R (version ≥ 4.3.0) and Bioconductor (version ≥3.17).

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信