In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.

Health data science Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.34133/hds.0179
Jack A Cummins, Ben S Gerber, Mayuko Ito Fukunaga, Nils Henninger, Catarina I Kiefe, Feifan Liu
{"title":"In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.","authors":"Jack A Cummins, Ben S Gerber, Mayuko Ito Fukunaga, Nils Henninger, Catarina I Kiefe, Feifan Liu","doi":"10.34133/hds.0179","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Acute ischemic stroke is a leading cause of death in the United States. Identifying patients with stroke at high risk of mortality is crucial for timely intervention and optimal resource allocation. This study aims to develop and validate machine learning-based models to predict in-hospital mortality risk for intensive care unit (ICU) patients with acute ischemic stroke and identify important associated factors. <b>Methods:</b> Our data include 3,489 acute ischemic stroke admissions to the ICU for patients not discharged or dead within 48 h from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Demographic, hospitalization type, procedure, medication, intake (intravenous and oral), laboratory, vital signs, and clinical assessment [e.g., Glasgow Coma Scale Scores (GCS)] during the initial 48 h of admissions were used to predict in-hospital mortality after 48 h of ICU admission. We explored 3 machine learning models (random forests, logistic regression, and XGBoost) and applied Bayesian optimization for hyperparameter tuning. Important features were identified using learned coefficients. <b>Results:</b> Experiments show that XGBoost tuned for area under the receiver operating characteristic curve (AUC ROC) was the best performing model (AUC ROC 0.86, F1 0.52), compared to random forests (AUC ROC 0.85, F1 0.47) and logistic regression (AUC ROC 0.75, F1 0.40). Top features include GCS, blood urea nitrogen, and Richmond RASS score. The model also demonstrates good fairness for males versus females and across racial/ethnic groups. <b>Conclusions:</b> Machine learning has shown great potential in predicting in-hospital mortality risk for people with acute ischemic stroke in the ICU setting. However, more ethical considerations need to be applied to ensure that performance differences across different racial/ethnic groups will not exacerbate existing health disparities and will not harm historically marginalized populations.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"5 ","pages":"0179"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute ischemic stroke is a leading cause of death in the United States. Identifying patients with stroke at high risk of mortality is crucial for timely intervention and optimal resource allocation. This study aims to develop and validate machine learning-based models to predict in-hospital mortality risk for intensive care unit (ICU) patients with acute ischemic stroke and identify important associated factors. Methods: Our data include 3,489 acute ischemic stroke admissions to the ICU for patients not discharged or dead within 48 h from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Demographic, hospitalization type, procedure, medication, intake (intravenous and oral), laboratory, vital signs, and clinical assessment [e.g., Glasgow Coma Scale Scores (GCS)] during the initial 48 h of admissions were used to predict in-hospital mortality after 48 h of ICU admission. We explored 3 machine learning models (random forests, logistic regression, and XGBoost) and applied Bayesian optimization for hyperparameter tuning. Important features were identified using learned coefficients. Results: Experiments show that XGBoost tuned for area under the receiver operating characteristic curve (AUC ROC) was the best performing model (AUC ROC 0.86, F1 0.52), compared to random forests (AUC ROC 0.85, F1 0.47) and logistic regression (AUC ROC 0.75, F1 0.40). Top features include GCS, blood urea nitrogen, and Richmond RASS score. The model also demonstrates good fairness for males versus females and across racial/ethnic groups. Conclusions: Machine learning has shown great potential in predicting in-hospital mortality risk for people with acute ischemic stroke in the ICU setting. However, more ethical considerations need to be applied to ensure that performance differences across different racial/ethnic groups will not exacerbate existing health disparities and will not harm historically marginalized populations.

背景:在美国,急性缺血性中风是导致死亡的主要原因。识别死亡风险高的中风患者对于及时干预和优化资源分配至关重要。本研究旨在开发和验证基于机器学习的模型,以预测重症监护病房(ICU)急性缺血性卒中患者的院内死亡风险,并确定重要的相关因素。方法:我们的数据包括重症监护医学信息市场-IV(MIMIC-IV)数据库中 3,489 名急性缺血性卒中患者入住重症监护病房后 48 小时内未出院或死亡的数据。入院最初 48 小时内的人口统计学、住院类型、手术、用药、摄入(静脉注射和口服)、实验室、生命体征和临床评估(如格拉斯哥昏迷量表评分 (GCS))被用来预测入住 ICU 48 小时后的院内死亡率。我们探索了 3 种机器学习模型(随机森林、逻辑回归和 XGBoost),并应用贝叶斯优化法进行超参数调整。利用学习到的系数确定重要特征。结果显示实验表明,与随机森林(AUC ROC 0.85,F1 0.47)和逻辑回归(AUC ROC 0.75,F1 0.40)相比,根据接收者操作特征曲线下面积(AUC ROC)调整的 XGBoost 是性能最好的模型(AUC ROC 0.86,F1 0.52)。首要特征包括 GCS、血尿素氮和里士满 RASS 评分。该模型对男性和女性以及不同种族/民族群体也显示出良好的公平性。结论:机器学习在预测 ICU 环境中急性缺血性卒中患者的院内死亡风险方面显示出巨大潜力。然而,还需要更多的伦理考虑,以确保不同种族/民族群体之间的性能差异不会加剧现有的健康差异,也不会伤害历史上被边缘化的人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信