In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.

Health data science Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.34133/hds.0179
Jack A Cummins, Ben S Gerber, Mayuko Ito Fukunaga, Nils Henninger, Catarina I Kiefe, Feifan Liu
{"title":"In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.","authors":"Jack A Cummins, Ben S Gerber, Mayuko Ito Fukunaga, Nils Henninger, Catarina I Kiefe, Feifan Liu","doi":"10.34133/hds.0179","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Acute ischemic stroke is a leading cause of death in the United States. Identifying patients with stroke at high risk of mortality is crucial for timely intervention and optimal resource allocation. This study aims to develop and validate machine learning-based models to predict in-hospital mortality risk for intensive care unit (ICU) patients with acute ischemic stroke and identify important associated factors. <b>Methods:</b> Our data include 3,489 acute ischemic stroke admissions to the ICU for patients not discharged or dead within 48 h from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Demographic, hospitalization type, procedure, medication, intake (intravenous and oral), laboratory, vital signs, and clinical assessment [e.g., Glasgow Coma Scale Scores (GCS)] during the initial 48 h of admissions were used to predict in-hospital mortality after 48 h of ICU admission. We explored 3 machine learning models (random forests, logistic regression, and XGBoost) and applied Bayesian optimization for hyperparameter tuning. Important features were identified using learned coefficients. <b>Results:</b> Experiments show that XGBoost tuned for area under the receiver operating characteristic curve (AUC ROC) was the best performing model (AUC ROC 0.86, F1 0.52), compared to random forests (AUC ROC 0.85, F1 0.47) and logistic regression (AUC ROC 0.75, F1 0.40). Top features include GCS, blood urea nitrogen, and Richmond RASS score. The model also demonstrates good fairness for males versus females and across racial/ethnic groups. <b>Conclusions:</b> Machine learning has shown great potential in predicting in-hospital mortality risk for people with acute ischemic stroke in the ICU setting. However, more ethical considerations need to be applied to ensure that performance differences across different racial/ethnic groups will not exacerbate existing health disparities and will not harm historically marginalized populations.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"5 ","pages":"0179"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute ischemic stroke is a leading cause of death in the United States. Identifying patients with stroke at high risk of mortality is crucial for timely intervention and optimal resource allocation. This study aims to develop and validate machine learning-based models to predict in-hospital mortality risk for intensive care unit (ICU) patients with acute ischemic stroke and identify important associated factors. Methods: Our data include 3,489 acute ischemic stroke admissions to the ICU for patients not discharged or dead within 48 h from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Demographic, hospitalization type, procedure, medication, intake (intravenous and oral), laboratory, vital signs, and clinical assessment [e.g., Glasgow Coma Scale Scores (GCS)] during the initial 48 h of admissions were used to predict in-hospital mortality after 48 h of ICU admission. We explored 3 machine learning models (random forests, logistic regression, and XGBoost) and applied Bayesian optimization for hyperparameter tuning. Important features were identified using learned coefficients. Results: Experiments show that XGBoost tuned for area under the receiver operating characteristic curve (AUC ROC) was the best performing model (AUC ROC 0.86, F1 0.52), compared to random forests (AUC ROC 0.85, F1 0.47) and logistic regression (AUC ROC 0.75, F1 0.40). Top features include GCS, blood urea nitrogen, and Richmond RASS score. The model also demonstrates good fairness for males versus females and across racial/ethnic groups. Conclusions: Machine learning has shown great potential in predicting in-hospital mortality risk for people with acute ischemic stroke in the ICU setting. However, more ethical considerations need to be applied to ensure that performance differences across different racial/ethnic groups will not exacerbate existing health disparities and will not harm historically marginalized populations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信