Tuning ProteinMPNN to reduce protein visibility via MHC Class I through direct preference optimization.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hans-Christof Gasser, Diego A Oyarzún, Javier Antonio Alfaro, Ajitha Rajan
{"title":"Tuning ProteinMPNN to reduce protein visibility via MHC Class I through direct preference optimization.","authors":"Hans-Christof Gasser, Diego A Oyarzún, Javier Antonio Alfaro, Ajitha Rajan","doi":"10.1093/protein/gzaf003","DOIUrl":null,"url":null,"abstract":"<p><p>ProteinMPNN is widely used in protein design workflows due to its ability to identify amino acid sequences that fold into specific 3D protein structures. In our work, we adjust ProteinMPNN to design proteins for a given 3D protein structure with reduced immune-visibility to cytotoxic T lymphocytes that recognize proteins via the MHC-I pathway. To achieve this, we developed a novel framework that integrates direct preference optimization (DPO)-a tuning method originally designed for large language models-with MHC-I peptide presentation predictions. This approach fosters the generation of designs with fewer MHC-I epitopes while preserving the protein's original structure. Our results demonstrate that DPO effectively reduces MHC-I visibility without compromising the structural integrity of the proteins.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ProteinMPNN is widely used in protein design workflows due to its ability to identify amino acid sequences that fold into specific 3D protein structures. In our work, we adjust ProteinMPNN to design proteins for a given 3D protein structure with reduced immune-visibility to cytotoxic T lymphocytes that recognize proteins via the MHC-I pathway. To achieve this, we developed a novel framework that integrates direct preference optimization (DPO)-a tuning method originally designed for large language models-with MHC-I peptide presentation predictions. This approach fosters the generation of designs with fewer MHC-I epitopes while preserving the protein's original structure. Our results demonstrate that DPO effectively reduces MHC-I visibility without compromising the structural integrity of the proteins.

通过直接偏好优化,调整ProteinMPNN通过MHC I类降低蛋白质可见性。
ProteinMPNN由于能够识别折叠成特定3D蛋白质结构的氨基酸序列而广泛应用于蛋白质设计工作流程。在我们的工作中,我们调整了ProteinMPNN来为给定的3D蛋白质结构设计蛋白质,这种结构对通过MHC-I途径识别蛋白质的细胞毒性T淋巴细胞的免疫可见性降低。为了实现这一目标,我们开发了一个新的框架,将直接偏好优化(DPO)-一种最初为大型语言模型设计的调整方法-与MHC-I肽呈现预测集成在一起。这种方法促进了具有较少mhc - 1表位的设计的产生,同时保留了蛋白质的原始结构。我们的研究结果表明,DPO在不影响蛋白质结构完整性的情况下有效地降低了MHC-I的可见性。源代码:https://github.com/hcgasser/CAPE_MPNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信