Tuning ProteinMPNN to reduce protein visibility via MHC Class I through direct preference optimization.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hans-Christof Gasser, Diego A Oyarzún, Javier Alfaro, Ajitha Rajan
{"title":"Tuning ProteinMPNN to reduce protein visibility via MHC Class I through direct preference optimization.","authors":"Hans-Christof Gasser, Diego A Oyarzún, Javier Alfaro, Ajitha Rajan","doi":"10.1093/protein/gzaf003","DOIUrl":null,"url":null,"abstract":"<p><p>ProteinMPNN is widely used in protein design workflows due to its ability to identify amino acid sequences that fold into specific 3D protein structures. In our work, we adjust ProteinMPNN to design proteins for a given 3D protein structure with reduced immune-visibility to cytotoxic T lymphocytes that recognize proteins via the MHC-I pathway. To achieve this, we developed a novel framework that integrates Direct Preference Optimization (DPO)-a tuning method originally designed for large language models-with MHC-I peptide presentation predictions. This approach fosters the generation of designs with fewer MHC-I epitopes while preserving the protein's original structure. Our results demonstrate that DPO effectively reduces MHC-I visibility without compromising the structural integrity of the proteins. Source code: https://github.com/hcgasser/CAPE_MPNN.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ProteinMPNN is widely used in protein design workflows due to its ability to identify amino acid sequences that fold into specific 3D protein structures. In our work, we adjust ProteinMPNN to design proteins for a given 3D protein structure with reduced immune-visibility to cytotoxic T lymphocytes that recognize proteins via the MHC-I pathway. To achieve this, we developed a novel framework that integrates Direct Preference Optimization (DPO)-a tuning method originally designed for large language models-with MHC-I peptide presentation predictions. This approach fosters the generation of designs with fewer MHC-I epitopes while preserving the protein's original structure. Our results demonstrate that DPO effectively reduces MHC-I visibility without compromising the structural integrity of the proteins. Source code: https://github.com/hcgasser/CAPE_MPNN.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信