The open-closed mod-minimizer algorithm.

IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Ragnar Groot Koerkamp, Daniel Liu, Giulio Ermanno Pibiri
{"title":"The open-closed mod-minimizer algorithm.","authors":"Ragnar Groot Koerkamp, Daniel Liu, Giulio Ermanno Pibiri","doi":"10.1186/s13015-025-00270-0","DOIUrl":null,"url":null,"abstract":"<p><p>Sampling algorithms that deterministically select a subset of <math><mi>k</mi></math> -mers are an important building block in bioinformatics applications. For example, they are used to index large textual collections, like DNA, and to compare sequences quickly. In such applications, a sampling algorithm is required to select one <math><mi>k</mi></math> -mer out of every window of w consecutive <math><mi>k</mi></math> -mers. The folklore and most used scheme is the random minimizer that selects the smallest <math><mi>k</mi></math> -mer in the window according to some random order. This scheme is remarkably simple and versatile, and has a density (expected fraction of selected <math><mi>k</mi></math> -mers) of <math><mrow><mn>2</mn> <mo>/</mo> <mo>(</mo> <mi>w</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> </math> . In practice, lower density leads to faster methods and smaller indexes, and it turns out that the random minimizer is not the best one can do. Indeed, some schemes are known to approach optimal density 1/w when <math><mrow><mi>k</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> , like the recently introduced mod-minimizer (Groot Koerkamp and Pibiri, WABI 2024). In this work, we study methods that achieve low density when <math><mrow><mi>k</mi> <mo>≤</mo> <mi>w</mi></mrow> </math> . In this small-k regime, a practical method with provably better density than the random minimizer is the miniception (Zheng et al., Bioinformatics 2021). This method can be elegantly described as sampling the smallest closed sycnmer (Edgar, PeerJ 2021) in the window according to some random order. We show that extending the miniception to prefer sampling open syncmers yields much better density. This new method-the open-closed minimizer-offers improved density for small <math><mrow><mi>k</mi> <mo>≤</mo> <mi>w</mi></mrow> </math> while being as fast to compute as the random minimizer. Compared to methods based on decycling sets, that achieve very low density in the small-k regime, our method has comparable density while being computationally simpler and intuitive. Furthermore, we extend the mod-minimizer to improve density of any scheme that works well for small k to also work well when <math><mrow><mi>k</mi> <mo>></mo> <mi>w</mi></mrow> </math> is large. We hence obtain the open-closed mod-minimizer, a practical method that improves over the mod-minimizer for all k.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"4"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-025-00270-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Sampling algorithms that deterministically select a subset of k -mers are an important building block in bioinformatics applications. For example, they are used to index large textual collections, like DNA, and to compare sequences quickly. In such applications, a sampling algorithm is required to select one k -mer out of every window of w consecutive k -mers. The folklore and most used scheme is the random minimizer that selects the smallest k -mer in the window according to some random order. This scheme is remarkably simple and versatile, and has a density (expected fraction of selected k -mers) of 2 / ( w + 1 ) . In practice, lower density leads to faster methods and smaller indexes, and it turns out that the random minimizer is not the best one can do. Indeed, some schemes are known to approach optimal density 1/w when k , like the recently introduced mod-minimizer (Groot Koerkamp and Pibiri, WABI 2024). In this work, we study methods that achieve low density when k w . In this small-k regime, a practical method with provably better density than the random minimizer is the miniception (Zheng et al., Bioinformatics 2021). This method can be elegantly described as sampling the smallest closed sycnmer (Edgar, PeerJ 2021) in the window according to some random order. We show that extending the miniception to prefer sampling open syncmers yields much better density. This new method-the open-closed minimizer-offers improved density for small k w while being as fast to compute as the random minimizer. Compared to methods based on decycling sets, that achieve very low density in the small-k regime, our method has comparable density while being computationally simpler and intuitive. Furthermore, we extend the mod-minimizer to improve density of any scheme that works well for small k to also work well when k > w is large. We hence obtain the open-closed mod-minimizer, a practical method that improves over the mod-minimizer for all k.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms for Molecular Biology
Algorithms for Molecular Biology 生物-生化研究方法
CiteScore
2.40
自引率
10.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning. Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms. Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信