{"title":"Lnc-TPT1-AS1/CBP/ATIC Axis Mediated Purine Metabolism Activation Promotes Breast Cancer Progression","authors":"Yiyun Zhang, Hanyu Zhang, Mingcui Li, Yanling Li, Zhuo-Ran Wang, Weilun Cheng, Yansong Liu, Zhengbo Fang, Ang Zheng, Jingxuan Wang, Fei Ma","doi":"10.1111/cas.70045","DOIUrl":null,"url":null,"abstract":"<p>The purine biosynthetic pathway was recently identified to play a crucial role in breast cancer progression. However, little was known about the regulatory mechanisms of long non-coding RNA in breast cancer purine metabolism. In this study, we discovered that LncRNA TPT1-AS1 (TPT1-AS1) was downregulated in breast cancer tissues. Its introduction in breast cancer cells markedly suppressed tumor growth and metastasis in xenograft tumor models. Mass spectrometric analysis suggested that the purine biosynthetic pathway was activated in TPT1-AS1-knockdown MCF-7 cells. Inosine monophosphate (IMP), the product of de novo purine biosynthesis, was significantly upregulated. Mechanistically, we found that TPT1-AS1 could physically interact with CBP (CREB-binding protein), which consequently led to the loss of H3K27Ac in the promoter area of ATIC, the key enzyme of IMP synthesis. This process could block breast cancer purine metabolism and inhibit breast cancer progression. In conclusion, our findings illustrate the role of non-coding RNAs in breast cancer purine metabolism reprogramming and present a potential candidate for breast cancer therapy.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 6","pages":"1565-1578"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.70045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The purine biosynthetic pathway was recently identified to play a crucial role in breast cancer progression. However, little was known about the regulatory mechanisms of long non-coding RNA in breast cancer purine metabolism. In this study, we discovered that LncRNA TPT1-AS1 (TPT1-AS1) was downregulated in breast cancer tissues. Its introduction in breast cancer cells markedly suppressed tumor growth and metastasis in xenograft tumor models. Mass spectrometric analysis suggested that the purine biosynthetic pathway was activated in TPT1-AS1-knockdown MCF-7 cells. Inosine monophosphate (IMP), the product of de novo purine biosynthesis, was significantly upregulated. Mechanistically, we found that TPT1-AS1 could physically interact with CBP (CREB-binding protein), which consequently led to the loss of H3K27Ac in the promoter area of ATIC, the key enzyme of IMP synthesis. This process could block breast cancer purine metabolism and inhibit breast cancer progression. In conclusion, our findings illustrate the role of non-coding RNAs in breast cancer purine metabolism reprogramming and present a potential candidate for breast cancer therapy.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.