{"title":"A novel genome-wide association study method for detecting quantitative trait loci interacting with complex population structures in plant genetics.","authors":"Kosuke Hamazaki, Hiroyoshi Iwata, Tristan Mary-Huard","doi":"10.1093/genetics/iyaf038","DOIUrl":null,"url":null,"abstract":"<p><p>In plant genetics, most modern association analyses are performed on panels that bring together individuals from several populations, including admixed individuals whose genomes comprise chromosomal regions from different populations. These panels can identify quantitative trait loci (QTLs) with population-specific effects and epistatic interactions between QTLs and polygenic backgrounds. However, analyzing a diverse panel constitutes a challenge for statistical analysis. The statistical model must account for possible interactions between a QTL and the panel structure while strictly controlling the detection error rate. Although models to detect population-specific QTLs have already been developed, they rely on prior information about the population structure. In practice, this prior information may be missing as many genome-wide association study (GWAS) panels exhibit complex population structures. The present study introduces 2 new models for detecting QTLs interacting with complex population structures. Both incorporate an interaction term between single nucleotide polymorphism/haplotype block and genetic background into conventional GWAS models. The proposed models were compared with state-of-the-art models through simulation studies that considered QTLs with different levels of interaction with their genetic backgrounds. Results showed that models matching simulation settings were most effective for detecting corresponding QTLs while the proposed models outperformed classical models in detecting QTLs interacting with polygenes. Additionally, when applied to a soybean dataset, one of our models identified putative associated QTLs that conventional models failed to detect. The new models, implemented in the RAINBOWR package available on CRAN, are expected to help uncover complex trait genetic architectures.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In plant genetics, most modern association analyses are performed on panels that bring together individuals from several populations, including admixed individuals whose genomes comprise chromosomal regions from different populations. These panels can identify quantitative trait loci (QTLs) with population-specific effects and epistatic interactions between QTLs and polygenic backgrounds. However, analyzing a diverse panel constitutes a challenge for statistical analysis. The statistical model must account for possible interactions between a QTL and the panel structure while strictly controlling the detection error rate. Although models to detect population-specific QTLs have already been developed, they rely on prior information about the population structure. In practice, this prior information may be missing as many genome-wide association study (GWAS) panels exhibit complex population structures. The present study introduces 2 new models for detecting QTLs interacting with complex population structures. Both incorporate an interaction term between single nucleotide polymorphism/haplotype block and genetic background into conventional GWAS models. The proposed models were compared with state-of-the-art models through simulation studies that considered QTLs with different levels of interaction with their genetic backgrounds. Results showed that models matching simulation settings were most effective for detecting corresponding QTLs while the proposed models outperformed classical models in detecting QTLs interacting with polygenes. Additionally, when applied to a soybean dataset, one of our models identified putative associated QTLs that conventional models failed to detect. The new models, implemented in the RAINBOWR package available on CRAN, are expected to help uncover complex trait genetic architectures.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.