Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder.

IF 4.1 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Quantum Machine Intelligence Pub Date : 2025-01-01 Epub Date: 2025-03-15 DOI:10.1007/s42484-025-00258-4
Callum Duffy, Mohammad Hassanshahi, Marcin Jastrzebski, Sarah Malik
{"title":"Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder.","authors":"Callum Duffy, Mohammad Hassanshahi, Marcin Jastrzebski, Sarah Malik","doi":"10.1007/s42484-025-00258-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.</p>","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"7 1","pages":"41"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42484-025-00258-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.

使用新型量子自编码器在大型强子对撞机上进行无监督的超标准模型事件发现。
本研究探索了在大型强子对撞机质子碰撞中可能出现的非监督异常检测的潜力,以识别超出标准模型的物理。我们介绍了一种新的量子自编码器电路ansatz,它是专门为这项任务设计的,与以前的方法相比,它具有优越的性能。为了评估其鲁棒性,我们在各种类型的新物理“信号”事件和不同的问题规模上评估了量子自编码器。此外,我们开发了经典的自编码器,其性能优于先前提出的量子自编码器,但仍被新的量子自编码器所超越,尽管其可训练参数的数量显着减少。最后,我们研究了量子自编码器电路的性质,重点是纠缠和魔法。我们在参数化量子电路的背景下引入了一种新的度量,稳定器2- rsamnyi熵来量化魔法,以及先前研究的Meyer-Wallach纠缠度量。有趣的是,这两个指标在整个训练过程中随着损失函数的减小而减小。这似乎表明,模型优先学习减少(但不是最小化)这些指标的参数。这项研究强调了量子自编码器在寻找大型强子对撞机标准模型之外的物理方面的潜在效用,并为进一步研究纠缠和魔法在量子机器学习中的作用开辟了令人兴奋的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
4.20%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信