Artificial intelligence-enhanced retinal imaging as a biomarker for systemic diseases.

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Theranostics Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.7150/thno.100786
Jinyuan Wang, Ya Xing Wang, Dian Zeng, Zhuoting Zhu, Dawei Li, Yuchen Liu, Bin Sheng, Andrzej Grzybowski, Tien Yin Wong
{"title":"Artificial intelligence-enhanced retinal imaging as a biomarker for systemic diseases.","authors":"Jinyuan Wang, Ya Xing Wang, Dian Zeng, Zhuoting Zhu, Dawei Li, Yuchen Liu, Bin Sheng, Andrzej Grzybowski, Tien Yin Wong","doi":"10.7150/thno.100786","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal images provide a non-invasive and accessible means to directly visualize human blood vessels and nerve fibers. Growing studies have investigated the intricate microvascular and neural circuitry within the retina, its interactions with other systemic vascular and nervous systems, and the link between retinal biomarkers and various systemic diseases. Using the eye to study systemic health, based on these connections, has been given a term as oculomics. Advancements in artificial intelligence (AI) technologies, particularly deep learning, have further increased the potential impact of this study. Leveraging these technologies, retinal analysis has demonstrated potentials in detecting numerous diseases, including cardiovascular diseases, central nervous system diseases, chronic kidney diseases, metabolic diseases, endocrine disorders, and hepatobiliary diseases. AI-based retinal imaging, which incorporates established modalities such as digital color fundus photographs, optical coherence tomography (OCT) and OCT angiography, as well as emerging technologies like ultra-wide field imaging, shows great promises in predicting systemic diseases. This provides a valuable opportunity for systemic diseases screening, early detection, prediction, risk stratification, and personalized prognostication. As the AI and big data research field grows, with the mission of transforming healthcare, they also face numerous challenges and limitations both in data and technology. The application of natural language processing framework, large language model, and other generative AI techniques presents both opportunities and concerns that require careful consideration. In this review, we not only summarize key studies on AI-enhanced retinal imaging for predicting systemic diseases but also underscore the significance of these advancements in transforming healthcare. By highlighting the remarkable progress made thus far, we provide a comprehensive overview of state-of-the-art techniques and explore the opportunities and challenges in this rapidly evolving field. This review aims to serve as a valuable resource for researchers and clinicians, guiding future studies and fostering the integration of AI in clinical practice.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 8","pages":"3223-3233"},"PeriodicalIF":12.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.100786","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal images provide a non-invasive and accessible means to directly visualize human blood vessels and nerve fibers. Growing studies have investigated the intricate microvascular and neural circuitry within the retina, its interactions with other systemic vascular and nervous systems, and the link between retinal biomarkers and various systemic diseases. Using the eye to study systemic health, based on these connections, has been given a term as oculomics. Advancements in artificial intelligence (AI) technologies, particularly deep learning, have further increased the potential impact of this study. Leveraging these technologies, retinal analysis has demonstrated potentials in detecting numerous diseases, including cardiovascular diseases, central nervous system diseases, chronic kidney diseases, metabolic diseases, endocrine disorders, and hepatobiliary diseases. AI-based retinal imaging, which incorporates established modalities such as digital color fundus photographs, optical coherence tomography (OCT) and OCT angiography, as well as emerging technologies like ultra-wide field imaging, shows great promises in predicting systemic diseases. This provides a valuable opportunity for systemic diseases screening, early detection, prediction, risk stratification, and personalized prognostication. As the AI and big data research field grows, with the mission of transforming healthcare, they also face numerous challenges and limitations both in data and technology. The application of natural language processing framework, large language model, and other generative AI techniques presents both opportunities and concerns that require careful consideration. In this review, we not only summarize key studies on AI-enhanced retinal imaging for predicting systemic diseases but also underscore the significance of these advancements in transforming healthcare. By highlighting the remarkable progress made thus far, we provide a comprehensive overview of state-of-the-art techniques and explore the opportunities and challenges in this rapidly evolving field. This review aims to serve as a valuable resource for researchers and clinicians, guiding future studies and fostering the integration of AI in clinical practice.

人工智能增强视网膜成像作为系统性疾病的生物标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信