Adaptive Weight Selection for Time-To-Event Data Under Non-Proportional Hazards.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Moritz Fabian Danzer, Ina Dormuth
{"title":"Adaptive Weight Selection for Time-To-Event Data Under Non-Proportional Hazards.","authors":"Moritz Fabian Danzer, Ina Dormuth","doi":"10.1002/sim.70045","DOIUrl":null,"url":null,"abstract":"<p><p>When planning a clinical trial for a time-to-event endpoint, we require an estimated effect size and need to consider the type of effect. Usually, an effect of proportional hazards is assumed with the hazard ratio as the corresponding effect measure. Thus, the standard procedure for survival data is generally based on a single-stage log-rank test. Knowing that the assumption of proportional hazards is often violated and sufficient knowledge to derive reasonable effect sizes is usually unavailable, such an approach is relatively rigid. We introduce a more flexible procedure by combining two methods designed to be more robust in case we have little to no prior knowledge. First, we employ a more flexible adaptive multi-stage design instead of a single-stage design. Second, we apply combination-type tests in the first stage of our suggested procedure to benefit from their robustness under uncertainty about the deviation pattern. We can then use the data collected during this period to choose a more specific single-weighted log-rank test for the subsequent stages. In this step, we employ Royston-Parmar spline models to extrapolate the survival curves to make a reasonable decision. Based on a real-world data example, we show that our approach can save a trial that would otherwise end with an inconclusive result. Additionally, our simulation studies demonstrate a sufficient power performance while maintaining more flexibility.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 6","pages":"e70045"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

When planning a clinical trial for a time-to-event endpoint, we require an estimated effect size and need to consider the type of effect. Usually, an effect of proportional hazards is assumed with the hazard ratio as the corresponding effect measure. Thus, the standard procedure for survival data is generally based on a single-stage log-rank test. Knowing that the assumption of proportional hazards is often violated and sufficient knowledge to derive reasonable effect sizes is usually unavailable, such an approach is relatively rigid. We introduce a more flexible procedure by combining two methods designed to be more robust in case we have little to no prior knowledge. First, we employ a more flexible adaptive multi-stage design instead of a single-stage design. Second, we apply combination-type tests in the first stage of our suggested procedure to benefit from their robustness under uncertainty about the deviation pattern. We can then use the data collected during this period to choose a more specific single-weighted log-rank test for the subsequent stages. In this step, we employ Royston-Parmar spline models to extrapolate the survival curves to make a reasonable decision. Based on a real-world data example, we show that our approach can save a trial that would otherwise end with an inconclusive result. Additionally, our simulation studies demonstrate a sufficient power performance while maintaining more flexibility.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信