External validation of a serum tumor marker algorithm for early prediction of no durable benefit to immunotherapy in metastastic non-small cell lung carcinoma.
Milou M F Schuurbiers, Freek A van Delft, Hendrik Koffijberg, Maarten J IJzerman, Kim Monkhorst, Marjolijn J L Ligtenberg, Daan van den Broek, Huub H van Rossum, Michel M van den Heuvel
{"title":"External validation of a serum tumor marker algorithm for early prediction of no durable benefit to immunotherapy in metastastic non-small cell lung carcinoma.","authors":"Milou M F Schuurbiers, Freek A van Delft, Hendrik Koffijberg, Maarten J IJzerman, Kim Monkhorst, Marjolijn J L Ligtenberg, Daan van den Broek, Huub H van Rossum, Michel M van den Heuvel","doi":"10.1177/14230380251316788","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundImmune checkpoint inhibitors (ICIs) provide a significant survival benefit in non-small cell lung cancer (NSCLC) patients; however, accurately predicting which patients will benefit remains a challenge. As previously shown, the STOP model, a machine learning model based on serum tumor markers, is capable of identifying non-responders after 6 weeks of ICIs.ObjectiveThis study aims to externally validate this model and to assess the predictive value in combination with radiological response assessment using RECIST criteria.MethodsIn a cohort of 242 metastatic NSCLC patients, CYFRA, CEA, and NSE were measured before start and after 6 weeks of ICI treatment. The ability of the STOP model to predict no durable benefit (NDB; progressive disease, death within 6 months or disease control of less than 6 months) was assessed using specificity and positive predictive value (PPV). Moreover, a combination of the STOP model with RECIST after 6-8 weeks of ICIs was investigated.ResultsThe STOP model achieved a specificity of 96% (95% CI 95%-97%) and a PPV of predicting NDB of 88.1% (95% CI 85.9%-90.3%). Combining the STOP model with RECIST improved specificity and PPV to 100% and predicted NDB on average 11.6 weeks (IQR 1.8-18.0 weeks) prior to developing radiologically defined progression.ConclusionsAfter 6 weeks of ICIs, the blood-based STOP model was capable of accurately predicting NDB in metastatic NSCLC patients, earlier than conventional radiological assessment. The combined serological and radiological response assessment creates an early opportunity to safely stop ICI treatment in patients who will not benefit, although the clinical utility of the assay is limited since the high specificity comes at the cost of a lower sensitivity.</p>","PeriodicalId":23364,"journal":{"name":"Tumor Biology","volume":"47 ","pages":"14230380251316788"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14230380251316788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundImmune checkpoint inhibitors (ICIs) provide a significant survival benefit in non-small cell lung cancer (NSCLC) patients; however, accurately predicting which patients will benefit remains a challenge. As previously shown, the STOP model, a machine learning model based on serum tumor markers, is capable of identifying non-responders after 6 weeks of ICIs.ObjectiveThis study aims to externally validate this model and to assess the predictive value in combination with radiological response assessment using RECIST criteria.MethodsIn a cohort of 242 metastatic NSCLC patients, CYFRA, CEA, and NSE were measured before start and after 6 weeks of ICI treatment. The ability of the STOP model to predict no durable benefit (NDB; progressive disease, death within 6 months or disease control of less than 6 months) was assessed using specificity and positive predictive value (PPV). Moreover, a combination of the STOP model with RECIST after 6-8 weeks of ICIs was investigated.ResultsThe STOP model achieved a specificity of 96% (95% CI 95%-97%) and a PPV of predicting NDB of 88.1% (95% CI 85.9%-90.3%). Combining the STOP model with RECIST improved specificity and PPV to 100% and predicted NDB on average 11.6 weeks (IQR 1.8-18.0 weeks) prior to developing radiologically defined progression.ConclusionsAfter 6 weeks of ICIs, the blood-based STOP model was capable of accurately predicting NDB in metastatic NSCLC patients, earlier than conventional radiological assessment. The combined serological and radiological response assessment creates an early opportunity to safely stop ICI treatment in patients who will not benefit, although the clinical utility of the assay is limited since the high specificity comes at the cost of a lower sensitivity.
期刊介绍:
Tumor Biology is a peer reviewed, international journal providing an open access forum for experimental and clinical cancer research. Tumor Biology covers all aspects of tumor markers, molecular biomarkers, tumor targeting, and mechanisms of tumor development and progression.
Specific topics of interest include, but are not limited to:
Pathway analyses,
Non-coding RNAs,
Circulating tumor cells,
Liquid biopsies,
Exosomes,
Epigenetics,
Cancer stem cells,
Tumor immunology and immunotherapy,
Tumor microenvironment,
Targeted therapies,
Therapy resistance
Cancer genetics,
Cancer risk screening.
Studies in other areas of basic, clinical and translational cancer research are also considered in order to promote connections and discoveries across different disciplines.
The journal publishes original articles, reviews, commentaries and guidelines on tumor marker use. All submissions are subject to rigorous peer review and are selected on the basis of whether the research is sound and deserves publication.
Tumor Biology is the Official Journal of the International Society of Oncology and BioMarkers (ISOBM).