Identification of biomarkers and target drugs for melanoma: a topological and deep learning approach.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Frontiers in Genetics Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.3389/fgene.2025.1471037
Xiwei Cui, Jipeng Song, Qingfeng Li, Jieyi Ren
{"title":"Identification of biomarkers and target drugs for melanoma: a topological and deep learning approach.","authors":"Xiwei Cui, Jipeng Song, Qingfeng Li, Jieyi Ren","doi":"10.3389/fgene.2025.1471037","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Melanoma, a highly aggressive malignancy characterized by rapid metastasis and elevated mortality rates, predominantly originates in cutaneous tissues. While surgical interventions, immunotherapy, and targeted therapies have advanced, the prognosis for advanced-stage melanoma remains dismal. Globally, melanoma incidence continues to rise, with the United States alone reporting over 100,000 new cases and 7,000 deaths annually. Despite the exponential growth of tumor data facilitated by next-generation sequencing (NGS), current analytical approaches predominantly emphasize single-gene analyses, neglecting critical insights into complex gene interaction networks. This study aims to address this gap by systematically exploring immune gene regulatory dynamics in melanoma progression.</p><p><strong>Methods: </strong>We developed a bidirectional, weighted, signed, and directed topological immune gene regulatory network to compare transcriptional landscapes between benign melanocytic nevi and cutaneous melanoma. Advanced network analysis tools were employed to identify structural disparities and functional module shifts. Key driver genes were validated through topological centrality metrics. Additionally, deep learning models were implemented to predict drug-target interactions, leveraging molecular features derived from network analyses.</p><p><strong>Results: </strong>Significant topological divergences emerged between nevi and melanoma networks, with dominant functional modules transitioning from cell cycle regulation in benign lesions to DNA repair and cell migration pathways in malignant tumors. A group of genes, including AURKA, CCNE1, APEX2, and EXOC8, were identified as potential orchestrators of immune microenvironment remodeling during malignant transformation. The deep learning framework successfully predicted 23 clinically actionable drug candidates targeting these molecular drivers.</p><p><strong>Discussion: </strong>The observed module shift from cell cycle to invasion-related pathways provides mechanistic insights into melanoma progression, suggesting early therapeutic targeting of DNA repair machinery might mitigate metastatic potential. The identified hub genes, particularly AURKA and DDX19B, represent novel candidates for immunomodulatory interventions. Our computational drug prediction strategy bridges molecular network analysis with clinical translation, offering a paradigm for precision oncology in melanoma. Future studies should validate these targets in preclinical models and explore network-based biomarkers for early detection.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1471037"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1471037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Melanoma, a highly aggressive malignancy characterized by rapid metastasis and elevated mortality rates, predominantly originates in cutaneous tissues. While surgical interventions, immunotherapy, and targeted therapies have advanced, the prognosis for advanced-stage melanoma remains dismal. Globally, melanoma incidence continues to rise, with the United States alone reporting over 100,000 new cases and 7,000 deaths annually. Despite the exponential growth of tumor data facilitated by next-generation sequencing (NGS), current analytical approaches predominantly emphasize single-gene analyses, neglecting critical insights into complex gene interaction networks. This study aims to address this gap by systematically exploring immune gene regulatory dynamics in melanoma progression.

Methods: We developed a bidirectional, weighted, signed, and directed topological immune gene regulatory network to compare transcriptional landscapes between benign melanocytic nevi and cutaneous melanoma. Advanced network analysis tools were employed to identify structural disparities and functional module shifts. Key driver genes were validated through topological centrality metrics. Additionally, deep learning models were implemented to predict drug-target interactions, leveraging molecular features derived from network analyses.

Results: Significant topological divergences emerged between nevi and melanoma networks, with dominant functional modules transitioning from cell cycle regulation in benign lesions to DNA repair and cell migration pathways in malignant tumors. A group of genes, including AURKA, CCNE1, APEX2, and EXOC8, were identified as potential orchestrators of immune microenvironment remodeling during malignant transformation. The deep learning framework successfully predicted 23 clinically actionable drug candidates targeting these molecular drivers.

Discussion: The observed module shift from cell cycle to invasion-related pathways provides mechanistic insights into melanoma progression, suggesting early therapeutic targeting of DNA repair machinery might mitigate metastatic potential. The identified hub genes, particularly AURKA and DDX19B, represent novel candidates for immunomodulatory interventions. Our computational drug prediction strategy bridges molecular network analysis with clinical translation, offering a paradigm for precision oncology in melanoma. Future studies should validate these targets in preclinical models and explore network-based biomarkers for early detection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Genetics
Frontiers in Genetics Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍: Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public. The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信