Biomaterial-based strategies: a new era in spinal cord injury treatment.

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2025-12-01 Epub Date: 2025-01-13 DOI:10.4103/NRR.NRR-D-24-00844
Shihong Zhu, Sijun Diao, Xiaoyin Liu, Zhujun Zhang, Fujun Liu, Wei Chen, Xiyue Lu, Huiyang Luo, Xu Cheng, Qiang Liao, Zhongyu Li, Jing Chen
{"title":"Biomaterial-based strategies: a new era in spinal cord injury treatment.","authors":"Shihong Zhu, Sijun Diao, Xiaoyin Liu, Zhujun Zhang, Fujun Liu, Wei Chen, Xiyue Lu, Huiyang Luo, Xu Cheng, Qiang Liao, Zhongyu Li, Jing Chen","doi":"10.4103/NRR.NRR-D-24-00844","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing neurological recovery and improving the prognosis of spinal cord injury have gained research attention recently. Spinal cord injury is associated with a complex molecular and cellular microenvironment. This complexity has prompted researchers to elucidate the underlying pathophysiological mechanisms and changes and to identify effective treatment strategies. Traditional approaches for spinal cord injury repair include surgery, oral or intravenous medications, and administration of neurotrophic factors; however, the efficacy of these approaches remains inconclusive, and serious adverse reactions continue to be a concern. With advancements in tissue engineering and regenerative medicine, emerging strategies for spinal cord injury repair now involve nanoparticle-based nanodelivery systems, scaffolds, and functional recovery techniques that incorporate biomaterials, bioengineering, stem cell, and growth factors as well as three-dimensional bioprinting. Ideal biomaterial scaffolds should not only provide structural support for neuron migration, adhesion, proliferation, and differentiation but also mimic the mechanical properties of natural spinal cord tissue. Additionally, these scaffolds should facilitate axon growth and neurogenesis by offering adjustable topography and a range of physical and biochemical cues. The three-dimensionally interconnected porous structure and appropriate physicochemical properties enabled by three-dimensional biomimetic printing technology can maximize the potential of biomaterials used for treating spinal cord injury. Therefore, correct selection and application of scaffolds, coupled with successful clinical translation, represent promising clinical objectives to enhance the treatment efficacy for and prognosis of spinal cord injury. This review elucidates the key mechanisms underlying the occurrence of spinal cord injury and regeneration post-injury, including neuroinflammation, oxidative stress, axon regeneration, and angiogenesis. This review also briefly discusses the critical role of nanodelivery systems used for repair and regeneration of injured spinal cord, highlighting the influence of nanoparticles and the factors that affect delivery efficiency. Finally, this review highlights tissue engineering strategies and the application of biomaterial scaffolds for the treatment of spinal cord injury. It discusses various types of scaffolds, their integrations with stem cells or growth factors, and approaches for optimization of scaffold design.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 12","pages":"3476-3500"},"PeriodicalIF":5.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00844","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing neurological recovery and improving the prognosis of spinal cord injury have gained research attention recently. Spinal cord injury is associated with a complex molecular and cellular microenvironment. This complexity has prompted researchers to elucidate the underlying pathophysiological mechanisms and changes and to identify effective treatment strategies. Traditional approaches for spinal cord injury repair include surgery, oral or intravenous medications, and administration of neurotrophic factors; however, the efficacy of these approaches remains inconclusive, and serious adverse reactions continue to be a concern. With advancements in tissue engineering and regenerative medicine, emerging strategies for spinal cord injury repair now involve nanoparticle-based nanodelivery systems, scaffolds, and functional recovery techniques that incorporate biomaterials, bioengineering, stem cell, and growth factors as well as three-dimensional bioprinting. Ideal biomaterial scaffolds should not only provide structural support for neuron migration, adhesion, proliferation, and differentiation but also mimic the mechanical properties of natural spinal cord tissue. Additionally, these scaffolds should facilitate axon growth and neurogenesis by offering adjustable topography and a range of physical and biochemical cues. The three-dimensionally interconnected porous structure and appropriate physicochemical properties enabled by three-dimensional biomimetic printing technology can maximize the potential of biomaterials used for treating spinal cord injury. Therefore, correct selection and application of scaffolds, coupled with successful clinical translation, represent promising clinical objectives to enhance the treatment efficacy for and prognosis of spinal cord injury. This review elucidates the key mechanisms underlying the occurrence of spinal cord injury and regeneration post-injury, including neuroinflammation, oxidative stress, axon regeneration, and angiogenesis. This review also briefly discusses the critical role of nanodelivery systems used for repair and regeneration of injured spinal cord, highlighting the influence of nanoparticles and the factors that affect delivery efficiency. Finally, this review highlights tissue engineering strategies and the application of biomaterial scaffolds for the treatment of spinal cord injury. It discusses various types of scaffolds, their integrations with stem cells or growth factors, and approaches for optimization of scaffold design.

基于生物材料的策略:脊髓损伤治疗的新时代。
促进神经功能恢复和改善脊髓损伤预后已成为近年来研究的热点。脊髓损伤与复杂的分子和细胞微环境有关。这种复杂性促使研究人员阐明潜在的病理生理机制和变化,并确定有效的治疗策略。脊髓损伤修复的传统方法包括手术、口服或静脉注射药物以及神经营养因子的施用;然而,这些方法的疗效仍然不确定,严重的不良反应仍然是一个问题。随着组织工程和再生医学的进步,脊髓损伤修复的新兴策略现在涉及基于纳米颗粒的纳米递送系统、支架和功能恢复技术,这些技术结合了生物材料、生物工程、干细胞和生长因子以及三维生物打印。理想的生物材料支架不仅要为神经元的迁移、粘附、增殖和分化提供结构支持,而且要模拟天然脊髓组织的力学特性。此外,这些支架应该通过提供可调节的地形和一系列物理和生化线索来促进轴突生长和神经发生。三维仿生打印技术所具有的三维互联多孔结构和适当的物理化学性质,可以最大限度地发挥生物材料用于治疗脊髓损伤的潜力。因此,正确的选择和应用支架,加上成功的临床转化,是提高脊髓损伤治疗效果和预后的良好临床目标。本文综述了脊髓损伤发生和损伤后再生的主要机制,包括神经炎症、氧化应激、轴突再生和血管生成。本文还简要讨论了纳米递送系统在损伤脊髓修复和再生中的关键作用,强调了纳米颗粒的影响和影响递送效率的因素。最后,本文综述了组织工程策略和生物材料支架在脊髓损伤治疗中的应用。它讨论了各种类型的支架,它们与干细胞或生长因子的整合,以及优化支架设计的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信