Embracing the changes and challenges with modern early drug discovery.

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Vinay Kumar, Kunal Roy
{"title":"Embracing the changes and challenges with modern early drug discovery.","authors":"Vinay Kumar, Kunal Roy","doi":"10.1080/17460441.2025.2481259","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The landscape of early drug discovery is rapidly evolving, fueled by significant advancements in artificial intelligence (AI) and machine learning (ML), which are transforming the way drugs are discovered. As traditional drug discovery faces growing challenges in terms of time, cost, and efficacy, there is a pressing need to integrate these emerging technologies to enhance the discovery process.</p><p><strong>Areas covered: </strong>In this perspective, the authors explore the role of AI and ML in modern early drug discovery and discuss their application in drug target identification, compound screening, and biomarker discovery. This article is based on a thorough literature search using the PubMed database to identify relevant studies that highlight the use of AI/ML models in computational chemistry, systems biology, and data-driven approaches to drug development. Emphasis is placed on how these technologies address key challenges such as data integration, predictive performance, and cost-efficiency in the drug discovery pipeline.</p><p><strong>Expert opinion: </strong>AI and ML have the potential to revolutionize early drug discovery by improving the accuracy and speed of identifying viable drug candidates. However, successful integration of these technologies requires overcoming challenges related to data quality, model interpretability, and the need for interdisciplinary collaboration.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-13"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2481259","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The landscape of early drug discovery is rapidly evolving, fueled by significant advancements in artificial intelligence (AI) and machine learning (ML), which are transforming the way drugs are discovered. As traditional drug discovery faces growing challenges in terms of time, cost, and efficacy, there is a pressing need to integrate these emerging technologies to enhance the discovery process.

Areas covered: In this perspective, the authors explore the role of AI and ML in modern early drug discovery and discuss their application in drug target identification, compound screening, and biomarker discovery. This article is based on a thorough literature search using the PubMed database to identify relevant studies that highlight the use of AI/ML models in computational chemistry, systems biology, and data-driven approaches to drug development. Emphasis is placed on how these technologies address key challenges such as data integration, predictive performance, and cost-efficiency in the drug discovery pipeline.

Expert opinion: AI and ML have the potential to revolutionize early drug discovery by improving the accuracy and speed of identifying viable drug candidates. However, successful integration of these technologies requires overcoming challenges related to data quality, model interpretability, and the need for interdisciplinary collaboration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信