Compound heterozygosity of a De novo 16q24.1 deletion and missense mutation in COX4I1 leads to developmental regression, intellectual disability, and seizures.

IF 2.8 3区 医学 Q2 CLINICAL NEUROLOGY
Epilepsia Open Pub Date : 2025-03-17 DOI:10.1002/epi4.13117
Zhen Liu, Mei He, Xuan Luo, Hu Pan, Xiao Mao, Jinping Su
{"title":"Compound heterozygosity of a De novo 16q24.1 deletion and missense mutation in COX4I1 leads to developmental regression, intellectual disability, and seizures.","authors":"Zhen Liu, Mei He, Xuan Luo, Hu Pan, Xiao Mao, Jinping Su","doi":"10.1002/epi4.13117","DOIUrl":null,"url":null,"abstract":"<p><p>The COX4I1 is responsible for encoding a crucial component of cytochrome c oxidase, integral to electron transport in the mitochondrial respiratory chain. Mutations in COX4I1 can result in a rare autosomal recessive disorder characterized by growth retardation, slow weight gain, microcephaly, and potentially, hematologic symptoms such as Fanconi anemia or neurological impairments including developmental regression and severe epilepsy. In this study, we report the first case of COX4I1 deficiency in China, identified in a 6-year-old boy. The patient exhibited developmental regression, epilepsy, low body weight, microcephaly, generalized muscle hypotonia, and progressive cerebral atrophy, but without hematologic damage or short stature. Compound heterozygosity for a de novo 16q24.1 deletion and a P152T missense mutation in the COX4I1 was detected. The P152T missense mutation is previously reported in patients with similar clinical manifestations. Additionally, we provide the first instance of progressive brain atrophy observed through MRI in a COX4I1 deficiency patient, broadening our understanding of the mutation spectrum and clinical phenotype of this genetic disorder. PLAIN LANGUAGE SUMMARY: We discovered the first case of COX4I1 deficiency in China, identified in a 6-year-old boy. The patient exhibited developmental regression, epilepsy, low body weight, microcephaly, generalized muscle hypotonia, and progressive cerebral atrophy, but without hematologic damage or short stature. Compound heterozygosity for a de novo 16q24.1 deletion and a P152T missense mutation in the COX4I1 was detected. Additionally, we provide the first instance of progressive brain atrophy observed through MRI in a COX4I1 deficiency patient, broadening our understanding of the mutation spectrum and clinical phenotype of this genetic disorder.</p>","PeriodicalId":12038,"journal":{"name":"Epilepsia Open","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/epi4.13117","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The COX4I1 is responsible for encoding a crucial component of cytochrome c oxidase, integral to electron transport in the mitochondrial respiratory chain. Mutations in COX4I1 can result in a rare autosomal recessive disorder characterized by growth retardation, slow weight gain, microcephaly, and potentially, hematologic symptoms such as Fanconi anemia or neurological impairments including developmental regression and severe epilepsy. In this study, we report the first case of COX4I1 deficiency in China, identified in a 6-year-old boy. The patient exhibited developmental regression, epilepsy, low body weight, microcephaly, generalized muscle hypotonia, and progressive cerebral atrophy, but without hematologic damage or short stature. Compound heterozygosity for a de novo 16q24.1 deletion and a P152T missense mutation in the COX4I1 was detected. The P152T missense mutation is previously reported in patients with similar clinical manifestations. Additionally, we provide the first instance of progressive brain atrophy observed through MRI in a COX4I1 deficiency patient, broadening our understanding of the mutation spectrum and clinical phenotype of this genetic disorder. PLAIN LANGUAGE SUMMARY: We discovered the first case of COX4I1 deficiency in China, identified in a 6-year-old boy. The patient exhibited developmental regression, epilepsy, low body weight, microcephaly, generalized muscle hypotonia, and progressive cerebral atrophy, but without hematologic damage or short stature. Compound heterozygosity for a de novo 16q24.1 deletion and a P152T missense mutation in the COX4I1 was detected. Additionally, we provide the first instance of progressive brain atrophy observed through MRI in a COX4I1 deficiency patient, broadening our understanding of the mutation spectrum and clinical phenotype of this genetic disorder.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsia Open
Epilepsia Open Medicine-Neurology (clinical)
CiteScore
4.40
自引率
6.70%
发文量
104
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信