Advanced machine learning framework for enhancing breast cancer diagnostics through transcriptomic profiling.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Mohamed J Saadh, Hanan Hassan Ahmed, Radhwan Abdul Kareem, Anupam Yadav, Subbulakshmi Ganesan, Aman Shankhyan, Girish Chandra Sharma, K Satyam Naidu, Akmal Rakhmatullaev, Hayder Naji Sameer, Ahmed Yaseen, Zainab H Athab, Mohaned Adil, Bagher Farhood
{"title":"Advanced machine learning framework for enhancing breast cancer diagnostics through transcriptomic profiling.","authors":"Mohamed J Saadh, Hanan Hassan Ahmed, Radhwan Abdul Kareem, Anupam Yadav, Subbulakshmi Ganesan, Aman Shankhyan, Girish Chandra Sharma, K Satyam Naidu, Akmal Rakhmatullaev, Hayder Naji Sameer, Ahmed Yaseen, Zainab H Athab, Mohaned Adil, Bagher Farhood","doi":"10.1007/s12672-025-02111-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study proposes an advanced machine learning (ML) framework for breast cancer diagnostics by integrating transcriptomic profiling with optimized feature selection and classification techniques.</p><p><strong>Materials and methods: </strong>A dataset of 1759 samples (987 breast cancer patients, 772 healthy controls) was analyzed using Recursive Feature Elimination, Boruta, and ElasticNet for feature selection. Dimensionality reduction techniques, including Non-Negative Matrix Factorization (NMF), Autoencoders, and transformer-based embeddings (BioBERT, DNABERT), were applied to enhance model interpretability. Classifiers such as XGBoost, LightGBM, ensemble voting, Multi-Layer Perceptron, and Stacking were trained using grid search and cross-validation. Model evaluation was conducted using accuracy, AUC, MCC, Kappa Score, ROC, and PR curves, with external validation performed on an independent dataset of 175 samples.</p><p><strong>Results: </strong>XGBoost and LightGBM achieved the highest test accuracies (0.91 and 0.90) and AUC values (up to 0.92), particularly with NMF and BioBERT. The ensemble Voting method exhibited the best external accuracy (0.92), confirming its robustness. Transformer-based embeddings and advanced feature selection techniques significantly improved model performance compared to conventional approaches like PCA and Decision Trees.</p><p><strong>Conclusion: </strong>The proposed ML framework enhances diagnostic accuracy and interpretability, demonstrating strong generalizability on an external dataset. These findings highlight its potential for precision oncology and personalized breast cancer diagnostics.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"334"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02111-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study proposes an advanced machine learning (ML) framework for breast cancer diagnostics by integrating transcriptomic profiling with optimized feature selection and classification techniques.

Materials and methods: A dataset of 1759 samples (987 breast cancer patients, 772 healthy controls) was analyzed using Recursive Feature Elimination, Boruta, and ElasticNet for feature selection. Dimensionality reduction techniques, including Non-Negative Matrix Factorization (NMF), Autoencoders, and transformer-based embeddings (BioBERT, DNABERT), were applied to enhance model interpretability. Classifiers such as XGBoost, LightGBM, ensemble voting, Multi-Layer Perceptron, and Stacking were trained using grid search and cross-validation. Model evaluation was conducted using accuracy, AUC, MCC, Kappa Score, ROC, and PR curves, with external validation performed on an independent dataset of 175 samples.

Results: XGBoost and LightGBM achieved the highest test accuracies (0.91 and 0.90) and AUC values (up to 0.92), particularly with NMF and BioBERT. The ensemble Voting method exhibited the best external accuracy (0.92), confirming its robustness. Transformer-based embeddings and advanced feature selection techniques significantly improved model performance compared to conventional approaches like PCA and Decision Trees.

Conclusion: The proposed ML framework enhances diagnostic accuracy and interpretability, demonstrating strong generalizability on an external dataset. These findings highlight its potential for precision oncology and personalized breast cancer diagnostics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信