{"title":"Pragmatic soft-decision data readout of encoded large DNA.","authors":"Qi Ge, Rui Qin, Shuang Liu, Quan Guo, Changcai Han, Weigang Chen","doi":"10.1093/bib/bbaf102","DOIUrl":null,"url":null,"abstract":"<p><p>The encoded large DNA can be cloned and stored in vivo, capable of write-once and stable replication for multiple retrievals, offering potential in economic data archiving. Nanopore sequencing is advantageous in data access of large DNA due to its rapidity and long-read sequencing capability. However, the data readout is commonly limited by insertion and deletion (indel) errors and sequence assembly complexity. Here, a pragmatic soft-decision data readout is presented, achieving assembly-free sequence reconstruction, indel error correction, and ultra-low coverage data readout. Specifically, the watermark is cleverly embedded within large DNA fragments, allowing for the direct localization of raw reads via watermark alignment to avoid complex read assembly. A soft-decision forward-backward algorithm is proposed, which can identify indel errors and provide probability information to the error correction code, enabling error-free data recovery. Additionally, a minimum state transition is maintained, and a read segmentation is incorporated to achieve fast information reading. The readout assays for two circular plasmids (~51 kb) with different coding rates were demonstrated and achieved error-free recovery directly from noisy reads (error rate ~1%) at coverage of 1-4×. Simulations conducted on large-scale datasets across various error rates further confirm the scalability of the method and its robust performance under extreme conditions. This readout method enables nearly single-molecule recovery of large DNA, particularly suitable for rapid readout of DNA storage.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf102","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The encoded large DNA can be cloned and stored in vivo, capable of write-once and stable replication for multiple retrievals, offering potential in economic data archiving. Nanopore sequencing is advantageous in data access of large DNA due to its rapidity and long-read sequencing capability. However, the data readout is commonly limited by insertion and deletion (indel) errors and sequence assembly complexity. Here, a pragmatic soft-decision data readout is presented, achieving assembly-free sequence reconstruction, indel error correction, and ultra-low coverage data readout. Specifically, the watermark is cleverly embedded within large DNA fragments, allowing for the direct localization of raw reads via watermark alignment to avoid complex read assembly. A soft-decision forward-backward algorithm is proposed, which can identify indel errors and provide probability information to the error correction code, enabling error-free data recovery. Additionally, a minimum state transition is maintained, and a read segmentation is incorporated to achieve fast information reading. The readout assays for two circular plasmids (~51 kb) with different coding rates were demonstrated and achieved error-free recovery directly from noisy reads (error rate ~1%) at coverage of 1-4×. Simulations conducted on large-scale datasets across various error rates further confirm the scalability of the method and its robust performance under extreme conditions. This readout method enables nearly single-molecule recovery of large DNA, particularly suitable for rapid readout of DNA storage.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.