Mingfei Han, Xiaoqing Chen, Xiao Li, Jie Ma, Tao Chen, Chunyuan Yang, Juan Wang, Yingxing Li, Wenting Guo, Yunping Zhu
{"title":"MulNet: a scalable framework for reconstructing intra- and intercellular signaling networks from bulk and single-cell RNA-seq data.","authors":"Mingfei Han, Xiaoqing Chen, Xiao Li, Jie Ma, Tao Chen, Chunyuan Yang, Juan Wang, Yingxing Li, Wenting Guo, Yunping Zhu","doi":"10.1093/bib/bbaf081","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression involves complex interactions between DNA, RNA, proteins, and small molecules. However, most existing molecular networks are built on limited interaction types, resulting in a fragmented understanding of gene regulation. Here, we present MulNet, a framework that organizes diverse molecular interactions underlying gene expression data into a scalable multilayer network. Additionally, MulNet can accurately identify gene modules and key regulators within this network. When applied across diverse cancer datasets, MulNet outperformed state-of-the-art methods in identifying biologically relevant modules. MulNet analysis of RNA-seq data from colon cancer revealed numerous well-established cancer regulators and a promising new therapeutic target, miR-8485, along with several downstream pathways it governs to inhibit tumor growth. MulNet analysis of single-cell RNA-seq data from head and neck cancer revealed intricate communication networks between fibroblasts and malignant cells mediated by transcription factors and cytokines. Overall, MulNet enables high-resolution reconstruction of intra- and intercellular communication from both bulk and single-cell data. The MulNet code and application are available at https://github.com/free1234hm/MulNet.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf081","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gene expression involves complex interactions between DNA, RNA, proteins, and small molecules. However, most existing molecular networks are built on limited interaction types, resulting in a fragmented understanding of gene regulation. Here, we present MulNet, a framework that organizes diverse molecular interactions underlying gene expression data into a scalable multilayer network. Additionally, MulNet can accurately identify gene modules and key regulators within this network. When applied across diverse cancer datasets, MulNet outperformed state-of-the-art methods in identifying biologically relevant modules. MulNet analysis of RNA-seq data from colon cancer revealed numerous well-established cancer regulators and a promising new therapeutic target, miR-8485, along with several downstream pathways it governs to inhibit tumor growth. MulNet analysis of single-cell RNA-seq data from head and neck cancer revealed intricate communication networks between fibroblasts and malignant cells mediated by transcription factors and cytokines. Overall, MulNet enables high-resolution reconstruction of intra- and intercellular communication from both bulk and single-cell data. The MulNet code and application are available at https://github.com/free1234hm/MulNet.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.