WTAP contributes to platinum resistance in high-grade serous ovarian cancer by up-regulating malic acid: insights from liquid chromatography and mass spectrometry analysis.

IF 6 3区 医学 Q1 CELL BIOLOGY
Ming Wang, Shuiqing Xu, Jianqing Xu, Jiahui Wei, Yumei Wu
{"title":"WTAP contributes to platinum resistance in high-grade serous ovarian cancer by up-regulating malic acid: insights from liquid chromatography and mass spectrometry analysis.","authors":"Ming Wang, Shuiqing Xu, Jianqing Xu, Jiahui Wei, Yumei Wu","doi":"10.1186/s40170-025-00383-5","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade serous cancer (HGSC) is the most prevalent and aggressive subtype of ovarian cancer. In this study, we utilized liquid chromatography and mass spectrometry analysis to investigate metabolic alterations in HGSC. Among the 1353 metabolites identified, 140 were significantly differed between HGSC and normal ovarian tissue. KEGG pathway enrichment analysis revealed 23 distinct metabolic pathways, including the alanine/aspartate/glutamate metabolism, pyruvate metabolism, biosynthesis of amino acids, and citrate cycle, etc. Of the significantly differentiated metabolites, malic acid, fumarate, and phosphoenolpyruvate were found in the citrate cycle and glycolysis. In further analysis, 22 differentially expressed genes (DEGs) of glucose metabolism were found between HGSC and normal controls. Multivariate Cox analysis of the 22 DEGs showed that ME1, ALDOC, and RANBP2 were associated with overall survival in the TCGA cohort.Bioinformatic analysis indicated WTAP is strongly correlated to the expression of ME1, which is a rate-limiting enzyme that regulates the shuttle of malic acid in mitochondria and cytoplasm. After the knockdown of WTAP in A2780 and OVCAR-3 cells, the activity of the malic enzyme decreased which led to the accumulation of malic acid and citric acid, and the reduction of pyruvate and lactic acid. In A2780 and OVCAR-3 cells, the IC50 to platinum was increased after the knockdown of WTAP. After the knockdown of WTAP, the expression of ME1 was down-regulated and the m6A modification was down-regulated in ovarian cell lines. On the SRAMP website, there were two binding sites with high m6A scores at the 5 '-UTR 177 and 970 of ME1 mRNA. WTAP contributes to the platinum resistance through regulating the conversion from aerobic glycolysis to OXPHOS by upregulating the expression of ME1.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"14"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00383-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-grade serous cancer (HGSC) is the most prevalent and aggressive subtype of ovarian cancer. In this study, we utilized liquid chromatography and mass spectrometry analysis to investigate metabolic alterations in HGSC. Among the 1353 metabolites identified, 140 were significantly differed between HGSC and normal ovarian tissue. KEGG pathway enrichment analysis revealed 23 distinct metabolic pathways, including the alanine/aspartate/glutamate metabolism, pyruvate metabolism, biosynthesis of amino acids, and citrate cycle, etc. Of the significantly differentiated metabolites, malic acid, fumarate, and phosphoenolpyruvate were found in the citrate cycle and glycolysis. In further analysis, 22 differentially expressed genes (DEGs) of glucose metabolism were found between HGSC and normal controls. Multivariate Cox analysis of the 22 DEGs showed that ME1, ALDOC, and RANBP2 were associated with overall survival in the TCGA cohort.Bioinformatic analysis indicated WTAP is strongly correlated to the expression of ME1, which is a rate-limiting enzyme that regulates the shuttle of malic acid in mitochondria and cytoplasm. After the knockdown of WTAP in A2780 and OVCAR-3 cells, the activity of the malic enzyme decreased which led to the accumulation of malic acid and citric acid, and the reduction of pyruvate and lactic acid. In A2780 and OVCAR-3 cells, the IC50 to platinum was increased after the knockdown of WTAP. After the knockdown of WTAP, the expression of ME1 was down-regulated and the m6A modification was down-regulated in ovarian cell lines. On the SRAMP website, there were two binding sites with high m6A scores at the 5 '-UTR 177 and 970 of ME1 mRNA. WTAP contributes to the platinum resistance through regulating the conversion from aerobic glycolysis to OXPHOS by upregulating the expression of ME1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信