Intelligent progress monitoring of healing wound tissues based on classification models.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Imen Fourati Kallel, Jalila Kaouthar Kammoun, Hanen Lajnef, Saif Ben Ali
{"title":"Intelligent progress monitoring of healing wound tissues based on classification models.","authors":"Imen Fourati Kallel, Jalila Kaouthar Kammoun, Hanen Lajnef, Saif Ben Ali","doi":"10.1088/2057-1976/adc137","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of wound monitoring techniques has seen a significant shift from traditional methods like ruler-based measurements to the use of AI-assisted assessment of wound tissues. This progression has been driven by the need for more accurate, efficient, and non-invasive methods for wound assessment and treatment planning. The proposed approach aims to automate wound analysis and reduce efforts to manage chronic wounds. The snake's approach is used to extract wound areas and geometrical measures are used to monitor the rate of wound healing. A segmentation based on the color thresholding and K-means technique was carried out and demonstrated the effectiveness of the thresholding technique in mapping the wound tissues. The three proportions of wound tissues necrosis, slough, granulation and wound size are combined with three features from the patient's medical record and transmitted to the Support Vector Machine (SVM), Naive Bayes (NB) and Decision Tree (DT) classifiers. Finally, this work is ended with a comparative study that shows the efficiency and the interest of the proposed approach.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adc137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of wound monitoring techniques has seen a significant shift from traditional methods like ruler-based measurements to the use of AI-assisted assessment of wound tissues. This progression has been driven by the need for more accurate, efficient, and non-invasive methods for wound assessment and treatment planning. The proposed approach aims to automate wound analysis and reduce efforts to manage chronic wounds. The snake's approach is used to extract wound areas and geometrical measures are used to monitor the rate of wound healing. A segmentation based on the color thresholding and K-means technique was carried out and demonstrated the effectiveness of the thresholding technique in mapping the wound tissues. The three proportions of wound tissues necrosis, slough, granulation and wound size are combined with three features from the patient's medical record and transmitted to the Support Vector Machine (SVM), Naive Bayes (NB) and Decision Tree (DT) classifiers. Finally, this work is ended with a comparative study that shows the efficiency and the interest of the proposed approach.

基于分类模型的伤口组织愈合过程智能监测。
伤口监测技术的发展已经从传统的测量方法(如基于尺子的测量)转变为使用人工智能辅助的伤口组织评估。对伤口评估和治疗计划的更准确、高效和非侵入性方法的需求推动了这一进展。该方法旨在实现伤口分析的自动化,减少管理慢性伤口的工作量。蛇的方法被用来提取伤口区域,几何测量被用来监测伤口愈合的速度。基于颜色阈值和K-means技术进行了分割,并证明了阈值技术在伤口组织映射中的有效性。将伤口组织坏死、脱落、肉芽和伤口大小的三种比例与患者病历中的三个特征相结合,传递给支持向量机(SVM)、朴素贝叶斯(NB)和决策树(DT)分类器。最后,本研究以比较研究结束,以显示所提出方法的效率和利益。& # xD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信