Ethical Considerations Emerge from Artificial Intelligence (AI) in Biotechnology.

Q3 Biochemistry, Genetics and Molecular Biology
Mahintaj Dara, Negar Azarpira
{"title":"Ethical Considerations Emerge from Artificial Intelligence (AI) in Biotechnology.","authors":"Mahintaj Dara, Negar Azarpira","doi":"10.18502/ajmb.v17i1.17680","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of Artificial intelligence (AI) in biotechnology presents significant ethical challenges that must be addressed to ensure responsible innovations. Key concerns include data privacy and security, as AI systems often handle sensitive genetic and health information, necessitating robust regulations to protect individuals' rights and maintain public trust. Algorithmic bias poses another critical issue; AI can reflect existing biases in training data, leading to inequitable healthcare outcomes. Transparency in AI decision-making is essential, as \"black box\" models hinder trust, especially in drug discovery and genetics. Ethical implications of genetic manipulation require careful scrutiny to define the limits of human intervention. Additionally, societal impacts must be considered to ensure equitable distribution of AI benefits, preventing the exacerbation of disparities. Engaging diverse stakeholders, including ethicists and policymakers, is vital in aligning these technologies with societal values. Ultimately, prioritizing ethics will allow us to harness AI and biotechnology's potential while safeguarding human rights and promoting equity.</p>","PeriodicalId":8669,"journal":{"name":"Avicenna journal of medical biotechnology","volume":"17 1","pages":"80-81"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna journal of medical biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ajmb.v17i1.17680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Artificial intelligence (AI) in biotechnology presents significant ethical challenges that must be addressed to ensure responsible innovations. Key concerns include data privacy and security, as AI systems often handle sensitive genetic and health information, necessitating robust regulations to protect individuals' rights and maintain public trust. Algorithmic bias poses another critical issue; AI can reflect existing biases in training data, leading to inequitable healthcare outcomes. Transparency in AI decision-making is essential, as "black box" models hinder trust, especially in drug discovery and genetics. Ethical implications of genetic manipulation require careful scrutiny to define the limits of human intervention. Additionally, societal impacts must be considered to ensure equitable distribution of AI benefits, preventing the exacerbation of disparities. Engaging diverse stakeholders, including ethicists and policymakers, is vital in aligning these technologies with societal values. Ultimately, prioritizing ethics will allow us to harness AI and biotechnology's potential while safeguarding human rights and promoting equity.

生物技术中人工智能(AI)的伦理考虑。
人工智能(AI)在生物技术中的整合提出了重大的伦理挑战,必须解决这些挑战,以确保负责任的创新。关键问题包括数据隐私和安全,因为人工智能系统经常处理敏感的遗传和健康信息,需要强有力的监管来保护个人权利并维持公众信任。算法偏见带来了另一个关键问题;人工智能可以反映训练数据中存在的偏见,从而导致不公平的医疗保健结果。人工智能决策的透明度至关重要,因为“黑箱”模型会阻碍信任,尤其是在药物发现和遗传学方面。基因操作的伦理影响需要仔细审查,以确定人类干预的限度。此外,必须考虑社会影响,以确保人工智能利益的公平分配,防止差距加剧。让包括伦理学家和政策制定者在内的不同利益相关者参与进来,对于使这些技术与社会价值观保持一致至关重要。最终,优先考虑伦理将使我们能够利用人工智能和生物技术的潜力,同时保护人权和促进公平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Avicenna journal of medical biotechnology
Avicenna journal of medical biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
2.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信