Therapeutic strategies to reverse cigarette smoke-induced ion channel and mucociliary dysfunction in COPD airway epithelial cells.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Neerupma Silswal, Nathalie Baumlin, Steven Haworth, Robert N Montgomery, Makoto Yoshida, John S Dennis, Sireesha Yerrathota, Michael D Kim, Matthias Salathe
{"title":"Therapeutic strategies to reverse cigarette smoke-induced ion channel and mucociliary dysfunction in COPD airway epithelial cells.","authors":"Neerupma Silswal, Nathalie Baumlin, Steven Haworth, Robert N Montgomery, Makoto Yoshida, John S Dennis, Sireesha Yerrathota, Michael D Kim, Matthias Salathe","doi":"10.1152/ajplung.00258.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cigarette smoke (CS) is a leading cause of chronic obstructive pulmonary disease (COPD). Here, we investigated whether the ion channel amplifier nesolicaftor rescues CS-induced mucociliary and ion channel dysfunction. Since CS increases expression of transforming growth factor-beta1 (TGF-β1), human bronchial epithelial cells (HBEC) from healthy donors were used for TGF-β1 and COPD donors (COPD-HBEC) for CS exposure experiments. CS and TGF-β1 induce mucociliary dysfunction by increasing MUC5AC and decreasing ion channel conductance important for mucus hydration. These include cystic fibrosis transmembrane conductance regulator (CFTR) and apical large-conductance, Ca<sup>2+</sup>-activated K<sup>+</sup> (BK) channels. Nesolicaftor rescued CFTR and BK channel dysfunction, restored ciliary beat frequency (CBF), and decreased mucus viscosity and MUC5AC expression in CS-exposed COPD-HBEC. Nesolicaftor further reversed reductions in ASL volumes, CBF, and CFTR and BK conductance, and blocked the increase in extracellular signal-regulated kinase (ERK) signaling in TGF-β1-exposed normal HBEC. Mechanistically, nesolicaftor increased, as expected, binding of PCBP1 to <i>CFTR</i> mRNA, but surprisingly also to <i>LRRC26</i> mRNA, which encodes the gamma subunit required for BK function. Similar to nesolicaftor, the angiotensin receptor blocker (ARB) losartan rescued TGF-β1-mediated decreases in PCBP1 binding to <i>LRRC26</i> mRNA. In addition, the ARB telmisartan restored PCBP1 binding to <i>CFTR</i> and <i>LRRC26</i> mRNAs to rescue CFTR and BK function in CS-exposed COPD-HBEC. Thus, nesolicaftor and ARBs act on the same target and were therefore neither additive nor synergistic in their actions. These data demonstrate that nesolicaftor and ARBs may provide benefits in COPD by improving ion channel function important for mucus hydration.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00258.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cigarette smoke (CS) is a leading cause of chronic obstructive pulmonary disease (COPD). Here, we investigated whether the ion channel amplifier nesolicaftor rescues CS-induced mucociliary and ion channel dysfunction. Since CS increases expression of transforming growth factor-beta1 (TGF-β1), human bronchial epithelial cells (HBEC) from healthy donors were used for TGF-β1 and COPD donors (COPD-HBEC) for CS exposure experiments. CS and TGF-β1 induce mucociliary dysfunction by increasing MUC5AC and decreasing ion channel conductance important for mucus hydration. These include cystic fibrosis transmembrane conductance regulator (CFTR) and apical large-conductance, Ca2+-activated K+ (BK) channels. Nesolicaftor rescued CFTR and BK channel dysfunction, restored ciliary beat frequency (CBF), and decreased mucus viscosity and MUC5AC expression in CS-exposed COPD-HBEC. Nesolicaftor further reversed reductions in ASL volumes, CBF, and CFTR and BK conductance, and blocked the increase in extracellular signal-regulated kinase (ERK) signaling in TGF-β1-exposed normal HBEC. Mechanistically, nesolicaftor increased, as expected, binding of PCBP1 to CFTR mRNA, but surprisingly also to LRRC26 mRNA, which encodes the gamma subunit required for BK function. Similar to nesolicaftor, the angiotensin receptor blocker (ARB) losartan rescued TGF-β1-mediated decreases in PCBP1 binding to LRRC26 mRNA. In addition, the ARB telmisartan restored PCBP1 binding to CFTR and LRRC26 mRNAs to rescue CFTR and BK function in CS-exposed COPD-HBEC. Thus, nesolicaftor and ARBs act on the same target and were therefore neither additive nor synergistic in their actions. These data demonstrate that nesolicaftor and ARBs may provide benefits in COPD by improving ion channel function important for mucus hydration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信