Transfer learning for accelerated failure time model with microarray data.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Yan-Bo Pei, Zheng-Yang Yu, Jun-Shan Shen
{"title":"Transfer learning for accelerated failure time model with microarray data.","authors":"Yan-Bo Pei, Zheng-Yang Yu, Jun-Shan Shen","doi":"10.1186/s12859-025-06056-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In microarray prognostic studies, researchers aim to identify genes associated with disease progression. However, due to the rarity of certain diseases and the cost of sample collection, researchers often face the challenge of limited sample size, which may prevent accurate estimation and risk assessment. This challenge necessitates methods that can leverage information from external data (i.e., source cohorts) to improve gene selection and risk assessment based on the current sample (i.e., target cohort).</p><p><strong>Method: </strong>We propose a transfer learning method for the accelerated failure time (AFT) model to enhance the fit on the target cohort by adaptively borrowing information from the source cohorts. We use a Leave-One-Out cross validation based procedure to evaluate the relative stability of selected genes and overall predictive power.</p><p><strong>Conclusion: </strong>In simulation studies, the transfer learning method for the AFT model can correctly identify a small number of genes, its estimation error is smaller than the estimation error obtained without using the source cohorts. Furthermore, the proposed method demonstrates satisfactory accuracy and robustness in addressing heterogeneity across the cohorts compared to the method that directly combines the target and the source cohorts in the AFT model. We analyze the GSE88770 and GSE25055 data using the proposed method. The selected genes are relatively stable, and the proposed method can make an overall satisfactory risk prediction.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"84"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06056-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In microarray prognostic studies, researchers aim to identify genes associated with disease progression. However, due to the rarity of certain diseases and the cost of sample collection, researchers often face the challenge of limited sample size, which may prevent accurate estimation and risk assessment. This challenge necessitates methods that can leverage information from external data (i.e., source cohorts) to improve gene selection and risk assessment based on the current sample (i.e., target cohort).

Method: We propose a transfer learning method for the accelerated failure time (AFT) model to enhance the fit on the target cohort by adaptively borrowing information from the source cohorts. We use a Leave-One-Out cross validation based procedure to evaluate the relative stability of selected genes and overall predictive power.

Conclusion: In simulation studies, the transfer learning method for the AFT model can correctly identify a small number of genes, its estimation error is smaller than the estimation error obtained without using the source cohorts. Furthermore, the proposed method demonstrates satisfactory accuracy and robustness in addressing heterogeneity across the cohorts compared to the method that directly combines the target and the source cohorts in the AFT model. We analyze the GSE88770 and GSE25055 data using the proposed method. The selected genes are relatively stable, and the proposed method can make an overall satisfactory risk prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信