Agreement Between Nail Psoriasis Severity Index Scores by a Convolutional Neural Network and Dermatologists: A Retrospective Study at an Academic New York City Institution.

IF 8.6 1区 医学 Q1 DERMATOLOGY
Jose W Ricardo, Rhiannon Miller, Matilde Iorizzo, Bianca M Piraccini, Michela Starace, Chander Grover, Dimitris Rigopoulos, Nilton Di Chiacchio, Nilton G Di Chiacchio, Hang Nguyen, Nga Nguyen, Zung Nguyen, Clifford Perlis, Jonathan Wolfe, Shari R Lipner
{"title":"Agreement Between Nail Psoriasis Severity Index Scores by a Convolutional Neural Network and Dermatologists: A Retrospective Study at an Academic New York City Institution.","authors":"Jose W Ricardo, Rhiannon Miller, Matilde Iorizzo, Bianca M Piraccini, Michela Starace, Chander Grover, Dimitris Rigopoulos, Nilton Di Chiacchio, Nilton G Di Chiacchio, Hang Nguyen, Nga Nguyen, Zung Nguyen, Clifford Perlis, Jonathan Wolfe, Shari R Lipner","doi":"10.1007/s40257-025-00934-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nail psoriasis (NP) affects up to 90% and 86% of patients with cutaneous psoriasis and psoriatic arthritis, respectively, with a significant impact on quality-of-life. The Nail Psoriasis Severity Index (NAPSI) is infrequently used in clinical practice owing to its labor-intensive nature and variable interobserver reliability.</p><p><strong>Objective: </strong>The objective of this study was to assess performance and inter-reader agreement between artificial intelligence (AI)-determined NAPSI scores and dermatologist-assigned scores.</p><p><strong>Methods: </strong>This cross-sectional study used clinical images of psoriatic fingernails captured retrospectively at a specialized nail clinic in New York City. A convolutional neural network (CNN) model was trained and utilized for NAPSI classification of psoriatic fingernail clinical images, with seven dermatologist nail experts scoring identical images. The primary outcome was the interclass correlation coefficient (ICC), using a one-way analysis of variance (ANOVA) fixed effects model for the single-rater absolute agreement, between the average NAPSI score determined by the dermatologists and the AI.</p><p><strong>Results: </strong>In total, 240 images of psoriatic fingernails were included. The ICC for overall NAPSI, matrix (NAPSIm), and bed (NAPSIb) scores among the dermatologists were 0.43 (95% confidence interval [CI] 0.33-0.55), 0.56 (95% CI 0.46-0.67), and 0.53 (95% CI 0.43-0.65), respectively. Comparing the AI algorithm-assigned NAPSI, NAPSIm, and NAPSIb scores with the average dermatologist-assigned scores, ICCs were 0.81 (95% CI 0.74-0.86), 0.75 (95% CI 0.65-0.82), and 0.81 (95% CI 0.74-0.86), respectively.</p><p><strong>Conclusions: </strong>We found an excellent correlation between AI-derived NAPSI scores and dermatologist-assigned scores, underscoring the potential of CNNs to improve accuracy and reliability in NAPSI scoring. The limitations of this study include the small sample size, undetermined CNN diagnostic accuracy, incomplete data, and potential racial/ethnic minority group underrepresentation.</p>","PeriodicalId":7706,"journal":{"name":"American Journal of Clinical Dermatology","volume":" ","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Clinical Dermatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40257-025-00934-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nail psoriasis (NP) affects up to 90% and 86% of patients with cutaneous psoriasis and psoriatic arthritis, respectively, with a significant impact on quality-of-life. The Nail Psoriasis Severity Index (NAPSI) is infrequently used in clinical practice owing to its labor-intensive nature and variable interobserver reliability.

Objective: The objective of this study was to assess performance and inter-reader agreement between artificial intelligence (AI)-determined NAPSI scores and dermatologist-assigned scores.

Methods: This cross-sectional study used clinical images of psoriatic fingernails captured retrospectively at a specialized nail clinic in New York City. A convolutional neural network (CNN) model was trained and utilized for NAPSI classification of psoriatic fingernail clinical images, with seven dermatologist nail experts scoring identical images. The primary outcome was the interclass correlation coefficient (ICC), using a one-way analysis of variance (ANOVA) fixed effects model for the single-rater absolute agreement, between the average NAPSI score determined by the dermatologists and the AI.

Results: In total, 240 images of psoriatic fingernails were included. The ICC for overall NAPSI, matrix (NAPSIm), and bed (NAPSIb) scores among the dermatologists were 0.43 (95% confidence interval [CI] 0.33-0.55), 0.56 (95% CI 0.46-0.67), and 0.53 (95% CI 0.43-0.65), respectively. Comparing the AI algorithm-assigned NAPSI, NAPSIm, and NAPSIb scores with the average dermatologist-assigned scores, ICCs were 0.81 (95% CI 0.74-0.86), 0.75 (95% CI 0.65-0.82), and 0.81 (95% CI 0.74-0.86), respectively.

Conclusions: We found an excellent correlation between AI-derived NAPSI scores and dermatologist-assigned scores, underscoring the potential of CNNs to improve accuracy and reliability in NAPSI scoring. The limitations of this study include the small sample size, undetermined CNN diagnostic accuracy, incomplete data, and potential racial/ethnic minority group underrepresentation.

卷积神经网络和皮肤科医生对指甲银屑病严重程度指数评分的一致性:纽约市一家学术机构的回顾性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
2.70%
发文量
84
审稿时长
>12 weeks
期刊介绍: The American Journal of Clinical Dermatology is dedicated to evidence-based therapy and effective patient management in dermatology. It publishes critical review articles and clinically focused original research covering comprehensive aspects of dermatological conditions. The journal enhances visibility and educational value through features like Key Points summaries, plain language summaries, and various digital elements, ensuring accessibility and depth for a diverse readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信