Unique properties of proximal and distal colon reflect distinct motor functions.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Wilmarie Morales-Soto, Kristen M Smith-Edwards
{"title":"Unique properties of proximal and distal colon reflect distinct motor functions.","authors":"Wilmarie Morales-Soto, Kristen M Smith-Edwards","doi":"10.1152/ajpgi.00215.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The gastrointestinal tract is made up of specialized organs that work in tandem to facilitate digestion. The colon regulates the final steps in this process where complex motor patterns in proximal regions facilitate the formation of fecal pellets that are propelled along the distal colon via self-sustaining neural peristalsis and temporarily stored before defecation. Historically, our understanding of colonic motility has focused primarily on distal regions, and the intrinsic reflex circuits of the enteric nervous system involved in neural peristalsis have been defined, but we do not yet have a clear grasp on the mechanisms orchestrating motor function in proximal regions. New approaches have brought to the forefront the unique structural, neurochemical, and functional characteristics that exist in distinct regions of the mouse and human colon. In this mini-review, we highlight key differences along the proximal-distal colonic axis and discuss how these differences relate to region-specific motor function.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G448-G454"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00215.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gastrointestinal tract is made up of specialized organs that work in tandem to facilitate digestion. The colon regulates the final steps in this process where complex motor patterns in proximal regions facilitate the formation of fecal pellets that are propelled along the distal colon via self-sustaining neural peristalsis and temporarily stored before defecation. Historically, our understanding of colonic motility has focused primarily on distal regions, and the intrinsic reflex circuits of the enteric nervous system involved in neural peristalsis have been defined, but we do not yet have a clear grasp on the mechanisms orchestrating motor function in proximal regions. New approaches have brought to the forefront the unique structural, neurochemical, and functional characteristics that exist in distinct regions of the mouse and human colon. In this mini-review, we highlight key differences along the proximal-distal colonic axis and discuss how these differences relate to region-specific motor function.

近端和远端结肠的独特特性反映了不同的运动功能。
胃肠道是由专门的器官组成的,它们协同工作以促进消化。结肠调节这一过程的最后步骤,其中近端区域复杂的运动模式促进了粪便颗粒的形成,这些颗粒通过自我维持的神经蠕动沿着远端结肠推进,并在排便前暂时储存起来。从历史上看,我们对结肠运动的理解主要集中在远端区域,肠神经系统(ENS)参与神经蠕动的内在反射回路已经被定义,但我们还没有清楚地掌握近端区域运动功能的协调机制。新方法将存在于小鼠和人类结肠不同区域的独特结构、神经化学和功能特征带到了最前沿。在这篇小型综述中,我们强调了结肠近端和远端轴的关键差异,并讨论了这些差异如何与特定区域的运动功能相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信