Anti-Pdc1p Nanobody as a Genetically Encoded Inhibitor of Ethanol Production Enables Dual Transcriptional and Post-translational Controls of Yeast Fermentations.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Allison Y Tang, Christopher L Gonzalez, Krishi A Mantri, Makoto A Lalwani, José L Avalos
{"title":"Anti-Pdc1p Nanobody as a Genetically Encoded Inhibitor of Ethanol Production Enables Dual Transcriptional and Post-translational Controls of Yeast Fermentations.","authors":"Allison Y Tang, Christopher L Gonzalez, Krishi A Mantri, Makoto A Lalwani, José L Avalos","doi":"10.1021/acssynbio.4c00617","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial fermentation provides a sustainable method of producing valuable chemicals. Adding dynamic control to fermentations can significantly improve titers, but most systems rely on transcriptional controls of metabolic enzymes, leaving existing intracellular enzymes unregulated. This limits the ability of transcriptional controls to switch off metabolic pathways, especially when metabolic enzymes have long half-lives. We developed a two-layer transcriptional/post-translational control system for yeast fermentations. Specifically, the system uses blue light to transcriptionally activate the major pyruvate decarboxylase <i>PDC1</i>, required for cell growth and concomitant ethanol production. Switching to darkness transcriptionally inactivates <i>PDC1</i> and instead activates the anti-Pdc1p nanobody, NbJRI, to act as a genetically encoded inhibitor of Pdc1p accumulated during the growth phase. This dual transcriptional/post-translational control improves the production of 2,3-BDO and citramalate by up to 100 and 92% compared to using transcriptional controls alone in dynamic two-phase fermentations. This study establishes the NbJRI nanobody as an effective genetically encoded inhibitor of Pdc1p that can enhance the production of pyruvate-derived chemicals.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00617","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial fermentation provides a sustainable method of producing valuable chemicals. Adding dynamic control to fermentations can significantly improve titers, but most systems rely on transcriptional controls of metabolic enzymes, leaving existing intracellular enzymes unregulated. This limits the ability of transcriptional controls to switch off metabolic pathways, especially when metabolic enzymes have long half-lives. We developed a two-layer transcriptional/post-translational control system for yeast fermentations. Specifically, the system uses blue light to transcriptionally activate the major pyruvate decarboxylase PDC1, required for cell growth and concomitant ethanol production. Switching to darkness transcriptionally inactivates PDC1 and instead activates the anti-Pdc1p nanobody, NbJRI, to act as a genetically encoded inhibitor of Pdc1p accumulated during the growth phase. This dual transcriptional/post-translational control improves the production of 2,3-BDO and citramalate by up to 100 and 92% compared to using transcriptional controls alone in dynamic two-phase fermentations. This study establishes the NbJRI nanobody as an effective genetically encoded inhibitor of Pdc1p that can enhance the production of pyruvate-derived chemicals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信