{"title":"Asymptotic Model of Non-Stationary Processes in Shells of Revolution under the Action of End Impact Loads of Bending Type","authors":"I. V. Kirillova","doi":"10.1134/S0025654424606591","DOIUrl":null,"url":null,"abstract":"<p>The present study deals with the construction of an asymptotic model of propagation of non-stationary waves in thin shells of revolution under the action of end impact loads of the bending type. The developed asymptotic methods for solving boundary value problems for the components of the stress-strain state that are the main ones for the considered type of waves, namely the bending component according to the Kirchhoff-Love theory and the hyperbolic boundary layer, are described. The asymptotic methods are based on various types of expansions in power series in a small parameter of thinness of the wall depending on the values of the indices of variability and dynamicity. In this case, integral Laplace transforms in time and Fourier transforms in the spatial coordinate, methods of frontal asymptotics, expansions in special functions are used. Calculations performed on the example of a spherical shell have shown the efficiency of the developed methods.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 7","pages":"3756 - 3768"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424606591","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study deals with the construction of an asymptotic model of propagation of non-stationary waves in thin shells of revolution under the action of end impact loads of the bending type. The developed asymptotic methods for solving boundary value problems for the components of the stress-strain state that are the main ones for the considered type of waves, namely the bending component according to the Kirchhoff-Love theory and the hyperbolic boundary layer, are described. The asymptotic methods are based on various types of expansions in power series in a small parameter of thinness of the wall depending on the values of the indices of variability and dynamicity. In this case, integral Laplace transforms in time and Fourier transforms in the spatial coordinate, methods of frontal asymptotics, expansions in special functions are used. Calculations performed on the example of a spherical shell have shown the efficiency of the developed methods.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.