Wild-Type TP53 Predicts Poor Prognosis in Lower-Grade Glioma via TP53-CXCL14-GATA3 Axis

IF 2.7 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amr Ahmed El-Arabey, Samia S. Alkhalil, Nouf Omar AlAfaleq, Sawsan Al-Shouli, Samah Saif Eldin M. Mohamed, Samia T. Al-Shouli, Mohnad Abdalla
{"title":"Wild-Type TP53 Predicts Poor Prognosis in Lower-Grade Glioma via TP53-CXCL14-GATA3 Axis","authors":"Amr Ahmed El-Arabey,&nbsp;Samia S. Alkhalil,&nbsp;Nouf Omar AlAfaleq,&nbsp;Sawsan Al-Shouli,&nbsp;Samah Saif Eldin M. Mohamed,&nbsp;Samia T. Al-Shouli,&nbsp;Mohnad Abdalla","doi":"10.1007/s12031-025-02323-w","DOIUrl":null,"url":null,"abstract":"<div><p>Low-grade gliomas (LGG) are malignant brain tumors that arise from the brain’s support cells (glial cells). LGG are the most common kind of central nervous system tumors in children and adolescents, accounting for around half of all cases. Tumor Protein p53 (<i>TP53</i>) regulates or promotes DNA damage and repair via a variety of cell cycle, apoptosis, and genomic stability pathways. However, the clinical role of <i>TP53</i> status in LGG patients is still unknown. Hence, we analyzed clinical data from the Cancer Genomic Atlas (TCGA) of LGG patients to see if <i>TP53</i> status affects clinical outcomes, molecular signatures of chemokines and microRNAs, and immune cell infiltrations within the tumor’s microenvironment of LGG patients. According to our findings, the most common phenotype in LGG patients is wild-type <i>TP53</i>, which is related to poor clinical outcomes and the expression of Chemokine ligand 14 (CXCL14) in many clinical parameters such as age, gender, stage, race, and purity. Besides, in LGG patients, wild-type <i>TP53</i> controls prognostic microRNAs such as has-miR-10a-3p and has-miR-155-5p. Furthermore, through activating GATA Binding Protein 3 (<i>GATA3</i>) and decreasing Fatty Acid Synthase (<i>FASN</i>), wild-type <i>TP53</i> orchestrates M1 macrophage and CD8<sup>+</sup> T cell infiltration, as well as the formation of brown adipose tissue and decreased white adipose tissue. In this regard, the <i>TP53-CXCL14-GATA3</i> axis has the potential to predict poor clinical outcomes in patients with wild-type <i>TP53</i> LGG.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02323-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-grade gliomas (LGG) are malignant brain tumors that arise from the brain’s support cells (glial cells). LGG are the most common kind of central nervous system tumors in children and adolescents, accounting for around half of all cases. Tumor Protein p53 (TP53) regulates or promotes DNA damage and repair via a variety of cell cycle, apoptosis, and genomic stability pathways. However, the clinical role of TP53 status in LGG patients is still unknown. Hence, we analyzed clinical data from the Cancer Genomic Atlas (TCGA) of LGG patients to see if TP53 status affects clinical outcomes, molecular signatures of chemokines and microRNAs, and immune cell infiltrations within the tumor’s microenvironment of LGG patients. According to our findings, the most common phenotype in LGG patients is wild-type TP53, which is related to poor clinical outcomes and the expression of Chemokine ligand 14 (CXCL14) in many clinical parameters such as age, gender, stage, race, and purity. Besides, in LGG patients, wild-type TP53 controls prognostic microRNAs such as has-miR-10a-3p and has-miR-155-5p. Furthermore, through activating GATA Binding Protein 3 (GATA3) and decreasing Fatty Acid Synthase (FASN), wild-type TP53 orchestrates M1 macrophage and CD8+ T cell infiltration, as well as the formation of brown adipose tissue and decreased white adipose tissue. In this regard, the TP53-CXCL14-GATA3 axis has the potential to predict poor clinical outcomes in patients with wild-type TP53 LGG.

野生型TP53通过TP53- cxcl14 - gata3轴预测低级别胶质瘤的不良预后
低级别胶质瘤(LGG)是由大脑的支持细胞(神经胶质细胞)产生的恶性脑肿瘤。LGG是儿童和青少年中最常见的中枢神经系统肿瘤,约占所有病例的一半。肿瘤蛋白p53 (TP53)通过多种细胞周期、凋亡和基因组稳定性途径调节或促进DNA损伤和修复。然而,TP53状态在LGG患者中的临床作用尚不清楚。因此,我们分析了LGG患者的癌症基因组图谱(TCGA)的临床数据,以了解TP53状态是否影响LGG患者的临床结局、趋化因子和microrna的分子特征以及肿瘤微环境中的免疫细胞浸润。根据我们的研究结果,LGG患者中最常见的表型是野生型TP53,这与临床预后差以及趋化因子配体14 (CXCL14)在许多临床参数(如年龄、性别、分期、种族和纯度)中的表达有关。此外,在LGG患者中,野生型TP53控制预后microrna,如has-miR-10a-3p和has-miR-155-5p。此外,野生型TP53通过激活GATA结合蛋白3 (GATA3)和降低脂肪酸合成酶(FASN),协调M1巨噬细胞和CD8+ T细胞浸润,形成棕色脂肪组织,减少白色脂肪组织。在这方面,TP53- cxcl14 - gata3轴有可能预测野生型TP53 LGG患者的不良临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信