{"title":"Self-Propagating High-Temperature Synthesis of Nb2AlC Max-Phase from Powder Mixture Nb + Al + C + Mg + Mg(ClO4)2","authors":"V. I. Vershinnikov, D. Yu. Kovalev","doi":"10.1134/S0020168524701577","DOIUrl":null,"url":null,"abstract":"<p>The technological foundations for producing the MAX phase Nb<sub>2</sub>AlC by the method of self-propagating high-temperature synthesis (SHS) from powdered mixtures of Nb + Al + C with an energy additive Mg + Mg(ClO<sub>4</sub>)<sub>2</sub> have been developed. As a result of the synthesis, a multiphase powder is formed, containing the target phase Nb<sub>2</sub>AlC and secondary phases NbC, Nb<sub>2</sub>C, AlNb<sub>2</sub>, MgO, and MgAl<sub>2</sub>O<sub>4</sub>. It has been shown that the phase composition of the product and the yield of the target phase are controlled by the carbon content in the charge. Reducing the carbon content in the charge relative to its stoichiometric ratio leads to a decrease in the niobium carbide content in the product. Optimal component ratios have been determined to obtain, after acid leaching, a powder containing ~82 wt % Nb<sub>2</sub>AlC.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 10","pages":"1250 - 1256"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701577","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The technological foundations for producing the MAX phase Nb2AlC by the method of self-propagating high-temperature synthesis (SHS) from powdered mixtures of Nb + Al + C with an energy additive Mg + Mg(ClO4)2 have been developed. As a result of the synthesis, a multiphase powder is formed, containing the target phase Nb2AlC and secondary phases NbC, Nb2C, AlNb2, MgO, and MgAl2O4. It has been shown that the phase composition of the product and the yield of the target phase are controlled by the carbon content in the charge. Reducing the carbon content in the charge relative to its stoichiometric ratio leads to a decrease in the niobium carbide content in the product. Optimal component ratios have been determined to obtain, after acid leaching, a powder containing ~82 wt % Nb2AlC.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.