Michele Cicoli, Christopher Hughes, Ahmed Rakin Kamal, Francesco Marino, Fernando Quevedo, Mario Ramos-Hamud, Gonzalo Villa
{"title":"Back to the origins of brane–antibrane inflation","authors":"Michele Cicoli, Christopher Hughes, Ahmed Rakin Kamal, Francesco Marino, Fernando Quevedo, Mario Ramos-Hamud, Gonzalo Villa","doi":"10.1140/epjc/s10052-025-13982-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study a new framework for brane–antibrane inflation where moduli stabilisation relies purely on perturbative corrections to the effective action. This guarantees that the model does not suffer from the eta-problem. The inflationary potential has two contributions: the tension of an antibrane at the tip of a warped throat, and its Coulomb interaction with a mobile brane. This represents the first realisation of the original idea of brane–antibrane inflation, as opposed to inflection point inflation which arises when the moduli are fixed with non-perturbative effects. Moreover, we formulate the brane–antibrane dynamics as an F-term potential of a nilpotent superfield in a manifestly supersymmetric effective theory. We impose compatibility with data and consistency conditions on control over the approximations and find that slow-roll inflation can occur in a large region of the underlying parameter space. The scalar spectral index is in agreement with data and the tensor-to-scalar ratio is beyond current observational reach. Interestingly, after the end of inflation the volume mode can, but does not need to, evolve towards a late-time minimum at larger values.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13982-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13982-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a new framework for brane–antibrane inflation where moduli stabilisation relies purely on perturbative corrections to the effective action. This guarantees that the model does not suffer from the eta-problem. The inflationary potential has two contributions: the tension of an antibrane at the tip of a warped throat, and its Coulomb interaction with a mobile brane. This represents the first realisation of the original idea of brane–antibrane inflation, as opposed to inflection point inflation which arises when the moduli are fixed with non-perturbative effects. Moreover, we formulate the brane–antibrane dynamics as an F-term potential of a nilpotent superfield in a manifestly supersymmetric effective theory. We impose compatibility with data and consistency conditions on control over the approximations and find that slow-roll inflation can occur in a large region of the underlying parameter space. The scalar spectral index is in agreement with data and the tensor-to-scalar ratio is beyond current observational reach. Interestingly, after the end of inflation the volume mode can, but does not need to, evolve towards a late-time minimum at larger values.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.