Li3–2xNbxCr2–x(PO4)3 Complex Phosphates with the NASICON Structure: Synthesis and Ionic Conductivity

IF 2 Q4 CHEMISTRY, PHYSICAL
S. A. Novikova, A. B. Yaroslavtsev
{"title":"Li3–2xNbxCr2–x(PO4)3 Complex Phosphates with the NASICON Structure: Synthesis and Ionic Conductivity","authors":"S. A. Novikova,&nbsp;A. B. Yaroslavtsev","doi":"10.1134/S2517751624600924","DOIUrl":null,"url":null,"abstract":"<p>One of the main trends in the development of metal-ion batteries concerns the transition to lithium anodes, the safe use of which is impossible without replacing liquid membranes with solid ones, primarily inorganic membranes. Lithium–niobium–chromium phosphates with calculated compositions Li<sub>3–2<i>x</i></sub>Nb<sub><i>x</i></sub>Cr<sub>2–<i>x</i></sub>(PO<sub>4</sub>)<sub>3</sub> (<i>х</i> = 0.95, 1.00, 1.05) were obtained by solid-state synthesis and characterized by XRD analysis and impedance spectroscopy. The obtained complex lithium-niobium-chromium phosphates with the NASICON structure crystallize in hexagonal modification. The unit cell parameters of crystal lattice of the synthesized materials decrease with increasing chromium content. The highest ionic conductivity and the lowest activation energy are exhibited by the material of composition Li<sub>1.1</sub>Nb<sub>0.95</sub>Cr<sub>1.05</sub>(PO<sub>4</sub>)<sub>3</sub> (3 × 10<sup>–5</sup> S/cm at 25°С), which indicates a greater mobility of lithium ions by the interstitial mechanism even in the region of its own disorderliness.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 6","pages":"433 - 438"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624600924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main trends in the development of metal-ion batteries concerns the transition to lithium anodes, the safe use of which is impossible without replacing liquid membranes with solid ones, primarily inorganic membranes. Lithium–niobium–chromium phosphates with calculated compositions Li3–2xNbxCr2–x(PO4)3 (х = 0.95, 1.00, 1.05) were obtained by solid-state synthesis and characterized by XRD analysis and impedance spectroscopy. The obtained complex lithium-niobium-chromium phosphates with the NASICON structure crystallize in hexagonal modification. The unit cell parameters of crystal lattice of the synthesized materials decrease with increasing chromium content. The highest ionic conductivity and the lowest activation energy are exhibited by the material of composition Li1.1Nb0.95Cr1.05(PO4)3 (3 × 10–5 S/cm at 25°С), which indicates a greater mobility of lithium ions by the interstitial mechanism even in the region of its own disorderliness.

Abstract Image

具有NASICON结构的Li3-2xNbxCr2-x (PO4)3配合磷酸盐:合成和离子电导率
金属离子电池发展的主要趋势之一是向锂阳极过渡,如果不用固体膜(主要是无机膜)代替液体膜,锂阳极的安全使用是不可能的。采用固相合成法制备了计算成分为Li3-2xNbxCr2-x (PO4)3 (x = 0.95, 1.00, 1.05)的磷酸铌铬锂,并用XRD分析和阻抗谱对其进行了表征。得到的具有NASICON结构的磷酸锂铌铬络合物以六方改性方式结晶。合成材料的晶格单位胞参数随铬含量的增加而降低。Li1.1Nb0.95Cr1.05(PO4)3的离子电导率最高,活化能最低(25°С时为3 × 10-5 S/cm),表明即使在其自身无序的区域,锂离子也能通过间隙机制进行较大的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信