Selective Limiting Concentration of Electrolyte Solutions with Singly and Doubly Charged Cations

IF 2 Q4 CHEMISTRY, PHYSICAL
N. O. Kovalchuk, A. A. Minenko, N. A. Romanyuk, N. V. Smirnova, S. A. Loza, V. I. Zabolotsky
{"title":"Selective Limiting Concentration of Electrolyte Solutions with Singly and Doubly Charged Cations","authors":"N. O. Kovalchuk,&nbsp;A. A. Minenko,&nbsp;N. A. Romanyuk,&nbsp;N. V. Smirnova,&nbsp;S. A. Loza,&nbsp;V. I. Zabolotsky","doi":"10.1134/S2517751625600050","DOIUrl":null,"url":null,"abstract":"<p>The effect of the anion-exchange layer of the copolymer <i>N</i>,<i>N</i>-diallyl-<i>N</i>,<i>N</i>-dimethylammonium chloride and ethyl methacrylate on the electrochemical properties of a homogeneous cation-exchange membrane based on perfluorosulfonic polymer has been studied. The application of a modifying layer with a thickness of 5 µm onto a 215 µm-thick membrane leads to a reduction in electrical conductivity by no more than 35%, while the diffusion permeability decreases more than fivefold and becomes independent of concentration. During testing of both cation-exchange and bilayer membranes in the process of limiting concentration of sodium chloride solution, comparable degrees of concentration have been achieved. The effectiveness of the bilayer membrane for selective limiting electrodialysis concentration has been demonstrated. When concentrating a solution containing sodium and calcium chlorides, the specific selective permeability coefficient <i>P</i>(Na<sup>+</sup>/Ca<sup>2+</sup>) for the cation-exchange membrane has ranged from 0.5 to 1.2. The use of the bilayer membrane significantly increase the specific selective permeability coefficient to 1.5–2.7, depending on the current density, allowing for efficient separation of electrolytes containing singly and doubly charged cations.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 6","pages":"439 - 448"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751625600050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of the anion-exchange layer of the copolymer N,N-diallyl-N,N-dimethylammonium chloride and ethyl methacrylate on the electrochemical properties of a homogeneous cation-exchange membrane based on perfluorosulfonic polymer has been studied. The application of a modifying layer with a thickness of 5 µm onto a 215 µm-thick membrane leads to a reduction in electrical conductivity by no more than 35%, while the diffusion permeability decreases more than fivefold and becomes independent of concentration. During testing of both cation-exchange and bilayer membranes in the process of limiting concentration of sodium chloride solution, comparable degrees of concentration have been achieved. The effectiveness of the bilayer membrane for selective limiting electrodialysis concentration has been demonstrated. When concentrating a solution containing sodium and calcium chlorides, the specific selective permeability coefficient P(Na+/Ca2+) for the cation-exchange membrane has ranged from 0.5 to 1.2. The use of the bilayer membrane significantly increase the specific selective permeability coefficient to 1.5–2.7, depending on the current density, allowing for efficient separation of electrolytes containing singly and doubly charged cations.

Abstract Image

带单、双电荷阳离子电解质溶液的选择性极限浓度
研究了共聚物N、N-二烯丙基N、N-二甲基氯化铵和甲基丙烯酸乙酯的阴离子交换层对全氟磺酸聚合物基均质阳离子交换膜电化学性能的影响。将厚度为5µm的改性层应用于厚度为215µm的膜上,导致电导率下降不超过35%,而扩散渗透率下降超过5倍,并且与浓度无关。在限制氯化钠溶液浓度的过程中,对阳离子交换膜和双层膜进行了测试,得到了相当程度的浓度。双层膜选择性限制电渗析浓度的有效性已得到证实。当浓缩含有钠和钙氯化物的溶液时,阳离子交换膜的特定选择渗透系数P(Na+/Ca2+)的范围为0.5至1.2。根据电流密度的不同,双层膜的使用显著提高了比选择渗透系数至1.5-2.7,允许有效分离含有单电荷和双电荷阳离子的电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信