Impact Treatment of the Surface of Oxygen-Free Copper with Nanosecond Laser Pulses in Water

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. Yu. Zheleznov, T. V. Malinskiy, S. I. Mikolutskiy, V. E. Rogalin, Yu. V. Khomich, V. A. Yamshchikov, A. A. Sergeev, S. V. Ivakin, I. A. Kaplunov, A. I. Ivanova
{"title":"Impact Treatment of the Surface of Oxygen-Free Copper with Nanosecond Laser Pulses in Water","authors":"V. Yu. Zheleznov,&nbsp;T. V. Malinskiy,&nbsp;S. I. Mikolutskiy,&nbsp;V. E. Rogalin,&nbsp;Yu. V. Khomich,&nbsp;V. A. Yamshchikov,&nbsp;A. A. Sergeev,&nbsp;S. V. Ivakin,&nbsp;I. A. Kaplunov,&nbsp;A. I. Ivanova","doi":"10.1134/S0020168524701437","DOIUrl":null,"url":null,"abstract":"<p>The surface of oxygen-free copper has been modified by a focused beam of a nanosecond solid-state laser under a water layer at energy densities <i>W</i><sub>p</sub> in the range 20–32 J/cm<sup>2</sup>, using uncoated copper and samples having absorbing coating. Laser treatment of the uncoated surface to an energy density of 32 J/cm<sup>2</sup> produced pits about 2.75 μm deep, whereas the pit depth on the coated surface was as large as 5 μm. The pit depth was determined as a function of laser pulse energy density. The effect of impact treatment of oxygen-free copper with a single high-power nanosecond laser pulse has been examined.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 9","pages":"1083 - 1088"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701437","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The surface of oxygen-free copper has been modified by a focused beam of a nanosecond solid-state laser under a water layer at energy densities Wp in the range 20–32 J/cm2, using uncoated copper and samples having absorbing coating. Laser treatment of the uncoated surface to an energy density of 32 J/cm2 produced pits about 2.75 μm deep, whereas the pit depth on the coated surface was as large as 5 μm. The pit depth was determined as a function of laser pulse energy density. The effect of impact treatment of oxygen-free copper with a single high-power nanosecond laser pulse has been examined.

Abstract Image

纳秒激光脉冲对水中无氧铜表面的冲击处理
在能量密度为20-32 J/cm2范围内的水层下,用纳秒固体激光聚焦光束对无氧铜表面进行了修饰,并使用了未涂层的铜和具有吸收涂层的样品。在能量密度为32 J/cm2的激光处理下,未涂层表面产生的凹坑深度约为2.75 μm,而涂层表面的凹坑深度可达5 μm。坑深是激光脉冲能量密度的函数。研究了单次高功率纳秒激光脉冲对无氧铜的冲击处理效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Materials
Inorganic Materials 工程技术-材料科学:综合
CiteScore
1.40
自引率
25.00%
发文量
80
审稿时长
3-6 weeks
期刊介绍: Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信