R. I. Gulyaeva, K. V. Pikulin, S. Kh. Estemirova, S. V. Sergeeva
{"title":"Effect of Mechanical Activation on the Thermal Oxidation of Sphalerite","authors":"R. I. Gulyaeva, K. V. Pikulin, S. Kh. Estemirova, S. V. Sergeeva","doi":"10.1134/S0020168525700037","DOIUrl":null,"url":null,"abstract":"<p>We consider the effect of mechanical activation on the particle size and strain of natural sphalerite particles and demonstrate that mechanical activation of the mineral for 20 min in a high-energy planetary mill reduces the crystallite size to 20 nm and that in this process the lattice strain in sphalerite reaches 0.73–0.85%. Thermogravimetry, calorimetry, and mass spectrometry have been used to study sphalerite oxidation processes during nonisothermal heating to a temperature of 1000°C in flowing air before and after mechanical activation. Mechanical activation of sphalerite has been shown to lead to a slight increase in the rate of sulfate formation, a decrease in the temperature and enthalpy of the thermal effects involved, and release of sulfur dioxide as a product of interaction with oxygen starting at a temperature of 150°C.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 11","pages":"1299 - 1306"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168525700037","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the effect of mechanical activation on the particle size and strain of natural sphalerite particles and demonstrate that mechanical activation of the mineral for 20 min in a high-energy planetary mill reduces the crystallite size to 20 nm and that in this process the lattice strain in sphalerite reaches 0.73–0.85%. Thermogravimetry, calorimetry, and mass spectrometry have been used to study sphalerite oxidation processes during nonisothermal heating to a temperature of 1000°C in flowing air before and after mechanical activation. Mechanical activation of sphalerite has been shown to lead to a slight increase in the rate of sulfate formation, a decrease in the temperature and enthalpy of the thermal effects involved, and release of sulfur dioxide as a product of interaction with oxygen starting at a temperature of 150°C.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.