Randomized Quantization for Privacy in Resource Constrained Machine Learning at-the-Edge and Federated Learning

Ce Feng;Parv Venkitasubramaniam
{"title":"Randomized Quantization for Privacy in Resource Constrained Machine Learning at-the-Edge and Federated Learning","authors":"Ce Feng;Parv Venkitasubramaniam","doi":"10.1109/TMLCN.2025.3550119","DOIUrl":null,"url":null,"abstract":"The increasing adoption of machine learning at the edge (ML-at-the-edge) and federated learning (FL) presents a dual challenge: ensuring data privacy as well as addressing resource constraints such as limited computational power, memory, and communication bandwidth. Traditional approaches typically apply differentially private stochastic gradient descent (DP-SGD) to preserve privacy, followed by quantization techniques as a post-processing step to reduce model size and communication overhead. However, this sequential framework introduces inherent drawbacks, as quantization alone lacks privacy guarantees and often introduces errors that degrade model performance. In this work, we propose randomized quantization as an integrated solution to address these dual challenges by embedding randomness directly into the quantization process. This approach enhances privacy while simultaneously reducing communication and computational overhead. To achieve this, we introduce Randomized Quantizer Projection Stochastic Gradient Descent (RQP-SGD), a method designed for ML-at-the-edge that embeds DP-SGD within a randomized quantization-based projection during model training. For federated learning, we develop Gaussian Sampling Quantization (GSQ), which integrates discrete Gaussian sampling into the quantization process to ensure local differential privacy (LDP). Unlike conventional methods that rely on Gaussian noise addition, GSQ achieves privacy through discrete Gaussian sampling while improving communication efficiency and model utility across distributed systems. Through rigorous theoretical analysis and extensive experiments on benchmark datasets, we demonstrate that these methods significantly enhance the utility-privacy trade-off and computational efficiency in both ML-at-the-edge and FL systems. RQP-SGD is evaluated on MNIST and the Breast Cancer Diagnostic dataset, showing an average 10.62% utility improvement over the deterministic quantization-based projected DP-SGD while maintaining (1.0, 0)-DP. In federated learning tasks, GSQ-FL improves accuracy by an average 11.52% over DP-FedPAQ across MNIST and FashionMNIST under non-IID conditions. Additionally, GSQ-FL outperforms DP-FedPAQ by 16.54% on CIFAR-10 and 8.7% on FEMNIST.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"395-419"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10919124","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919124/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing adoption of machine learning at the edge (ML-at-the-edge) and federated learning (FL) presents a dual challenge: ensuring data privacy as well as addressing resource constraints such as limited computational power, memory, and communication bandwidth. Traditional approaches typically apply differentially private stochastic gradient descent (DP-SGD) to preserve privacy, followed by quantization techniques as a post-processing step to reduce model size and communication overhead. However, this sequential framework introduces inherent drawbacks, as quantization alone lacks privacy guarantees and often introduces errors that degrade model performance. In this work, we propose randomized quantization as an integrated solution to address these dual challenges by embedding randomness directly into the quantization process. This approach enhances privacy while simultaneously reducing communication and computational overhead. To achieve this, we introduce Randomized Quantizer Projection Stochastic Gradient Descent (RQP-SGD), a method designed for ML-at-the-edge that embeds DP-SGD within a randomized quantization-based projection during model training. For federated learning, we develop Gaussian Sampling Quantization (GSQ), which integrates discrete Gaussian sampling into the quantization process to ensure local differential privacy (LDP). Unlike conventional methods that rely on Gaussian noise addition, GSQ achieves privacy through discrete Gaussian sampling while improving communication efficiency and model utility across distributed systems. Through rigorous theoretical analysis and extensive experiments on benchmark datasets, we demonstrate that these methods significantly enhance the utility-privacy trade-off and computational efficiency in both ML-at-the-edge and FL systems. RQP-SGD is evaluated on MNIST and the Breast Cancer Diagnostic dataset, showing an average 10.62% utility improvement over the deterministic quantization-based projected DP-SGD while maintaining (1.0, 0)-DP. In federated learning tasks, GSQ-FL improves accuracy by an average 11.52% over DP-FedPAQ across MNIST and FashionMNIST under non-IID conditions. Additionally, GSQ-FL outperforms DP-FedPAQ by 16.54% on CIFAR-10 and 8.7% on FEMNIST.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信