{"title":"Shadows and parameter estimation of rotating quantum corrected black holes and constraints from EHT observation of M87* and Sgr A*","authors":"Heena Ali , Shafqat Ul Islam , Sushant G. Ghosh","doi":"10.1016/j.jheap.2025.100367","DOIUrl":null,"url":null,"abstract":"<div><div>The scarcity of quantum gravity (QG) inspired rotating black holes limits the progress of testing QG through Event Horizon Telescope (EHT) observations. The EHT imaged the supermassive black holes, Sgr A* and M87*, revealing an angular shadow diameter of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mo>=</mo><mn>48.7</mn><mo>±</mo><mn>7</mn><mi>μ</mi></math></span>as with a black hole mass of <span><math><mi>M</mi><mo>=</mo><msubsup><mrow><mn>4.0</mn></mrow><mrow><mo>−</mo><mn>0.6</mn></mrow><mrow><mo>+</mo><mn>1.1</mn></mrow></msubsup><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mi>M</mi><mo>⊙</mo></math></span> for Sgr A*. For M87*, with a mass of <span><math><mi>M</mi><mo>=</mo><mo>(</mo><mn>6.5</mn><mo>±</mo><mn>0.7</mn><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, the EHT measured an angular diameter of <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>42</mn><mo>±</mo><mn>3</mn><mi>μ</mi></math></span>as. We present rotating quantum-corrected black hole (RQCBH) spacetimes with an additional QC parameter <em>α</em> and constrain it by EHT observations. For angular shadow diameter (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub></math></span>) of Sgr A* at <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>50</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mn>0.0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1.443</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8066</mn><mi>M</mi><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>90</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mn>0.0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1.447</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.894</mn><mi>M</mi><mo>)</mo></math></span>. While for M87* at inclination <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>17</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8511</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.6157</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0.8985</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. For <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>90</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8262</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.9799</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0.4141</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. These results show that <em>α</em> significantly affects the shadows, offering key constraints on QG models. With EHT constraints from Sgr A and M87*, RQCBHs and Kerr black holes are indistinguishable in much of the EHT-constrained parameter space, making RQCBHs strong candidates for astrophysical black holes along with other BHs, e.g., regular black holes and other quantum-corrected solutions.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"47 ","pages":"Article 100367"},"PeriodicalIF":10.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825000485","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The scarcity of quantum gravity (QG) inspired rotating black holes limits the progress of testing QG through Event Horizon Telescope (EHT) observations. The EHT imaged the supermassive black holes, Sgr A* and M87*, revealing an angular shadow diameter of as with a black hole mass of for Sgr A*. For M87*, with a mass of , the EHT measured an angular diameter of as. We present rotating quantum-corrected black hole (RQCBH) spacetimes with an additional QC parameter α and constrain it by EHT observations. For angular shadow diameter () of Sgr A* at , the bounds are and . For , the bounds are and . While for M87* at inclination , the bounds are at and at . For , the bounds are at and at . These results show that α significantly affects the shadows, offering key constraints on QG models. With EHT constraints from Sgr A and M87*, RQCBHs and Kerr black holes are indistinguishable in much of the EHT-constrained parameter space, making RQCBHs strong candidates for astrophysical black holes along with other BHs, e.g., regular black holes and other quantum-corrected solutions.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.