{"title":"A federated learning model with the whale optimization algorithm for renewable energy prediction","authors":"Viorica Rozina Chifu, Tudor Cioara, Cristian Daniel Anitei, Cristina Bianca Pop, Ionut Anghel, Liana Toderean","doi":"10.1016/j.compeleceng.2025.110259","DOIUrl":null,"url":null,"abstract":"<div><div>Federated prediction models for energy prosumers create a global model by combining insights from local machine learning models trained on-site without centralizing the data. For time series energy data, this collaborative approach faces challenges due to the non-IID nature of the data, variations in generation patterns, the high number of model parameters, and convergence issues, leading to poor prediction accuracy. This paper introduces a novel federated learning model, FedWOA, which uses the whale optimization algorithm to determine optimal aggregation coefficients based on the local model weight vectors by pondering the updates considering the model performance and data dimensionality construct the global shared model. To handle the non-IID data the prosumers were clustered based on the similarity of their energy profiles using K-Means. FedWOA improves the prediction quality at the prosumer site, with a 16 % average reduction of the mean absolute error compared to FedAVG while demonstrating good convergence and reduced loss.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110259"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625002022","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Federated prediction models for energy prosumers create a global model by combining insights from local machine learning models trained on-site without centralizing the data. For time series energy data, this collaborative approach faces challenges due to the non-IID nature of the data, variations in generation patterns, the high number of model parameters, and convergence issues, leading to poor prediction accuracy. This paper introduces a novel federated learning model, FedWOA, which uses the whale optimization algorithm to determine optimal aggregation coefficients based on the local model weight vectors by pondering the updates considering the model performance and data dimensionality construct the global shared model. To handle the non-IID data the prosumers were clustered based on the similarity of their energy profiles using K-Means. FedWOA improves the prediction quality at the prosumer site, with a 16 % average reduction of the mean absolute error compared to FedAVG while demonstrating good convergence and reduced loss.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.