Key-isovalue selection and hierarchical exploration visualization of weather forecast ensembles

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Feng Zhou, Hao Hu, Fengjie Wang, Jiamin Zhu, Wenwen Gao, Min Zhu
{"title":"Key-isovalue selection and hierarchical exploration visualization of weather forecast ensembles","authors":"Feng Zhou,&nbsp;Hao Hu,&nbsp;Fengjie Wang,&nbsp;Jiamin Zhu,&nbsp;Wenwen Gao,&nbsp;Min Zhu","doi":"10.1016/j.visinf.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Weather forecast ensembles are commonly used to assess the uncertainty and confidence of weather predictions. Conventional methods in meteorology often employ ensemble mean and standard deviation plots, as well as spaghetti plots, to visualize ensemble data. However, these methods suffer from significant information loss and visual clutter. In this paper, we propose a new approach for uncertainty visualization of weather forecast ensembles, including isovalue selection based on information loss and hierarchical visualization that integrates visual abstraction and detail preservation. Our approach uses non-uniform downsampling to select key-isovalues and provides an interactive visualization method based on hierarchical clustering. Firstly, we sample key-isovalues by contour probability similarity and determine the optimal sampling number using an information loss curve. Then, the corresponding isocontours are presented to guide users in selecting key-isovalues. Once the isovalue is chosen, we perform agglomerative hierarchical clustering on the isocontours based on signed distance fields and generate visual abstractions for each isocontour cluster to avoid visual clutter. We link a bubble tree to the visual abstractions to explore the details of isocontour clusters at different levels. We demonstrate the utility of our approach through two case studies with meteorological experts on real-world data. We further validate its effectiveness by quantitatively assessing information loss and visual clutter. Additionally, we confirm its usability through expert evaluation.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"9 1","pages":"Pages 58-70"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X2500004X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Weather forecast ensembles are commonly used to assess the uncertainty and confidence of weather predictions. Conventional methods in meteorology often employ ensemble mean and standard deviation plots, as well as spaghetti plots, to visualize ensemble data. However, these methods suffer from significant information loss and visual clutter. In this paper, we propose a new approach for uncertainty visualization of weather forecast ensembles, including isovalue selection based on information loss and hierarchical visualization that integrates visual abstraction and detail preservation. Our approach uses non-uniform downsampling to select key-isovalues and provides an interactive visualization method based on hierarchical clustering. Firstly, we sample key-isovalues by contour probability similarity and determine the optimal sampling number using an information loss curve. Then, the corresponding isocontours are presented to guide users in selecting key-isovalues. Once the isovalue is chosen, we perform agglomerative hierarchical clustering on the isocontours based on signed distance fields and generate visual abstractions for each isocontour cluster to avoid visual clutter. We link a bubble tree to the visual abstractions to explore the details of isocontour clusters at different levels. We demonstrate the utility of our approach through two case studies with meteorological experts on real-world data. We further validate its effectiveness by quantitatively assessing information loss and visual clutter. Additionally, we confirm its usability through expert evaluation.
天气预报集合的键等值选择与分层探索可视化
天气预报集合通常用于评估天气预报的不确定性和可信度。气象学的传统方法通常采用集合均值和标准偏差图以及意大利面图来可视化集合数据。然而,这些方法存在严重的信息丢失和视觉混乱。在本文中,我们提出了一种新的天气预报集合的不确定性可视化方法,包括基于信息损失的等值选择和集成了视觉抽象和细节保留的分层可视化。我们的方法使用非均匀下采样来选择键等值,并提供了一种基于分层聚类的交互式可视化方法。首先,利用轮廓概率相似度对键等值进行采样,利用信息损失曲线确定最优采样次数;然后给出相应的等等值线,指导用户选择关键等等值线。选取等高值后,基于符号距离域对等高线进行聚类,并对每个等高线聚类生成视觉抽象,避免视觉混乱。我们将气泡树与视觉抽象联系起来,以探索不同层次的等轮廓簇的细节。我们通过气象专家对真实世界数据的两个案例研究,展示了我们方法的实用性。我们通过定量评估信息丢失和视觉混乱来进一步验证其有效性。此外,我们通过专家评估确认其可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信