Partial divisibility of random sets

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Jnaneshwar Baslingker, Biltu Dan
{"title":"Partial divisibility of random sets","authors":"Jnaneshwar Baslingker,&nbsp;Biltu Dan","doi":"10.1016/j.spa.2025.104632","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we ask the following question: Let <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> be the void functional of a random closed set <span><math><mi>X</mi></math></span>. For which <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> a void functional? We answer this question when <span><math><mi>X</mi></math></span> is a random subset of a finite set. The result is then generalized to exponents which preserve complete monotonicity of functions on finite lattices. Also, we study the question of approximating an <span><math><mi>m</mi></math></span>-divisible random set by infinitely divisible random sets. We prove a theorem analogous to that of Arak’s classical result (Arak, 1981, 1982) on approximating an <span><math><mi>m</mi></math></span>-divisible random variable by infinitely divisible random variables.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104632"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000730","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we ask the following question: Let VX be the void functional of a random closed set X. For which α>0 is VXα a void functional? We answer this question when X is a random subset of a finite set. The result is then generalized to exponents which preserve complete monotonicity of functions on finite lattices. Also, we study the question of approximating an m-divisible random set by infinitely divisible random sets. We prove a theorem analogous to that of Arak’s classical result (Arak, 1981, 1982) on approximating an m-divisible random variable by infinitely divisible random variables.
随机集的部分可分性
在本文中,我们提出以下问题:设VX是随机闭集x的空泛函,对于哪个α>;0是VXα的空泛函?当X是一个有限集合的随机子集时,我们回答这个问题。然后将结果推广到在有限格上保持函数完全单调性的指数。同时,研究了用无穷可分随机集逼近m可分随机集的问题。我们证明了一个类似Arak经典结果(Arak, 1981,1982)关于用无限可分随机变量逼近m可分随机变量的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信