Using street view imagery and localized crowdsourcing survey to model perceived safety of the visual built environment by gender

IF 7.6 Q1 REMOTE SENSING
Hanlin Zhou , Jue Wang , Kathi Wilson , Michael Widener , Devin Yongzhao Wu , Eric Xu
{"title":"Using street view imagery and localized crowdsourcing survey to model perceived safety of the visual built environment by gender","authors":"Hanlin Zhou ,&nbsp;Jue Wang ,&nbsp;Kathi Wilson ,&nbsp;Michael Widener ,&nbsp;Devin Yongzhao Wu ,&nbsp;Eric Xu","doi":"10.1016/j.jag.2025.104421","DOIUrl":null,"url":null,"abstract":"<div><div>Scholars have documented that perceived safety of the visual built environment (VBE) can influence human behaviors. The dual developments of street view imagery (SVI) and deep learning techniques offer a cost-effective approach to measure perceived safety. However, current SVI-based perception models often lack specific definitions of perceived safety and demographic information when collecting data for model training. Furthermore, these models are rarely validated by onsite perception evaluations, which undermines their credibility.</div><div>Given these gaps, this study builds a localized crowdsourcing survey to train crime-related and barrier-related perceived safety of the VBE captured by SVIs, and compares model-predicted perceptions with onsite perceptions. This study specifically focuses on their ability to represent onsite perceptions and examines gender differences as a test case in safety perception. This study recruits over 1,800 participants living in the Greater Toronto Area to rate SVIs in terms of crime-related and barrier-related perceived safety.</div><div>Pearson correlation coefficients reveal a positive but weak correlation between female and male safety perceptions, indicating some consistency while highlighting potential gender differences in safety perceptions. Machine-learning perception models are then trained using this localized SVI survey. Model-predicted perceptions are further validated to assess their alignments with onsite perceptions at sampling locations. The results show that model-predicted perceptions do not exactly match onsite perceptions but align better when less stringent criteria are applied (within ± 1 scale point).</div><div>In short, this study underscores the necessity of gender inclusivity and a clear definition of safety terms when using SVIs to model perceptions. While SVI-based perception models are cost-effective, the predicted perceptions cannot yet fully substitute onsite perceptions, necessitating broader research to refine the effectiveness.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"139 ","pages":"Article 104421"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Scholars have documented that perceived safety of the visual built environment (VBE) can influence human behaviors. The dual developments of street view imagery (SVI) and deep learning techniques offer a cost-effective approach to measure perceived safety. However, current SVI-based perception models often lack specific definitions of perceived safety and demographic information when collecting data for model training. Furthermore, these models are rarely validated by onsite perception evaluations, which undermines their credibility.
Given these gaps, this study builds a localized crowdsourcing survey to train crime-related and barrier-related perceived safety of the VBE captured by SVIs, and compares model-predicted perceptions with onsite perceptions. This study specifically focuses on their ability to represent onsite perceptions and examines gender differences as a test case in safety perception. This study recruits over 1,800 participants living in the Greater Toronto Area to rate SVIs in terms of crime-related and barrier-related perceived safety.
Pearson correlation coefficients reveal a positive but weak correlation between female and male safety perceptions, indicating some consistency while highlighting potential gender differences in safety perceptions. Machine-learning perception models are then trained using this localized SVI survey. Model-predicted perceptions are further validated to assess their alignments with onsite perceptions at sampling locations. The results show that model-predicted perceptions do not exactly match onsite perceptions but align better when less stringent criteria are applied (within ± 1 scale point).
In short, this study underscores the necessity of gender inclusivity and a clear definition of safety terms when using SVIs to model perceptions. While SVI-based perception models are cost-effective, the predicted perceptions cannot yet fully substitute onsite perceptions, necessitating broader research to refine the effectiveness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信