Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Arman Tekinalp , Yashraj Bhosale , Songyuan Cui , Fan Kiat Chan , Mattia Gazzola
{"title":"Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations","authors":"Arman Tekinalp ,&nbsp;Yashraj Bhosale ,&nbsp;Songyuan Cui ,&nbsp;Fan Kiat Chan ,&nbsp;Mattia Gazzola","doi":"10.1016/j.cma.2025.117910","DOIUrl":null,"url":null,"abstract":"<div><div>We present a hybrid Eulerian–Lagrangian method for the direct simulation of three-dimensional, heterogeneous, active, and self-propelling structures made of soft fibers and operating in incompressible viscous flows. Fiber-based organization of matter is pervasive in nature and engineering, from biological architectures made of cilia, hair, muscles or bones to polymers, composite materials or soft robots. In nature, many such structures are adapted to manipulate flows for feeding, swimming or energy harvesting, through mechanisms that are often not fully understood. While simulations can support the analysis (and subsequent translational engineering) of these systems, extreme fibers’ aspect-ratios, large elastic deformations, two-way coupling with three-dimensional flows, and self-propulsion all render the problem numerically challenging. To address this, we couple Cosserat rod theory, where fibers’ dynamics is accurately captured in one-dimensional fashion, with the velocity–vorticity formulation of the Navier–Stokes equations, through a virtual boundary technique. The favorable properties of the resultant hydroelastic solver are demonstrated against a battery of benchmarks, and further showcased in a range of multi-physics scenarios, involving magnetic actuation, viscous streaming, biomechanics, multi-body interaction, and untethered swimming.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"440 ","pages":"Article 117910"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001823","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a hybrid Eulerian–Lagrangian method for the direct simulation of three-dimensional, heterogeneous, active, and self-propelling structures made of soft fibers and operating in incompressible viscous flows. Fiber-based organization of matter is pervasive in nature and engineering, from biological architectures made of cilia, hair, muscles or bones to polymers, composite materials or soft robots. In nature, many such structures are adapted to manipulate flows for feeding, swimming or energy harvesting, through mechanisms that are often not fully understood. While simulations can support the analysis (and subsequent translational engineering) of these systems, extreme fibers’ aspect-ratios, large elastic deformations, two-way coupling with three-dimensional flows, and self-propulsion all render the problem numerically challenging. To address this, we couple Cosserat rod theory, where fibers’ dynamics is accurately captured in one-dimensional fashion, with the velocity–vorticity formulation of the Navier–Stokes equations, through a virtual boundary technique. The favorable properties of the resultant hydroelastic solver are demonstrated against a battery of benchmarks, and further showcased in a range of multi-physics scenarios, involving magnetic actuation, viscous streaming, biomechanics, multi-body interaction, and untethered swimming.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信