A multimodal framework for assessing the link between pathomics, transcriptomics, and pancreatic cancer mutations

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Francesco Berloco, Gian Maria Zaccaria, Nicola Altini, Simona Colucci, Vitoantonio Bevilacqua
{"title":"A multimodal framework for assessing the link between pathomics, transcriptomics, and pancreatic cancer mutations","authors":"Francesco Berloco,&nbsp;Gian Maria Zaccaria,&nbsp;Nicola Altini,&nbsp;Simona Colucci,&nbsp;Vitoantonio Bevilacqua","doi":"10.1016/j.compmedimag.2025.102526","DOIUrl":null,"url":null,"abstract":"<div><div>In Pancreatic Ductal Adenocarcinoma (PDAC), predicting genetic mutations directly from histopathological images using Deep Learning can provide valuable insights. The combination of several omics can provide further knowledge on mechanisms underlying tumor biology. This study aimed at developing an explainable multimodal pipeline to predict genetic mutations for the <em>KRAS</em>, <em>TP53</em>, <em>SMAD4</em>, and <em>CDKN2A</em> genes, integrating pathomic features with transcriptomics from two independent datasets, the TCGA-PAAD, assumed as training set, and the CPTAC-PDA, as external validation set. Large and small configurations of CLAM (Clustering-constrained Attention Multiple Instance Learning) models were evaluated with three different feature extractors (ResNet50, UNI, and CONCH). RNA-seq data were pre-processed both conventionally and using three autoencoder architectures. The processed transcript panels were input into machine learning (ML) models for mutation classification. Attention maps and SHAP were employed, highlighting significant features from both data modalities. A fusion layer or a voting mechanism combined the outputs from pathomic and transcriptomic models, obtaining a multimodal prediction. Performance comparisons were assessed by Area Under Receiver Operating Characteristic (AUROC) and Precision-Recall (AUPRC) curves. On the validation set, for <em>KRAS</em>, multimodal ML achieved 0.92 of AUROC and 0.98 of AUPRC. For <em>TP53</em>, the multimodal voting model achieved 0.75 of AUROC and 0.85 of AUPRC. For <em>SMAD4</em> and <em>CDKN2A</em>, transcriptomic ML models achieved AUROC of 0.71 and 0.65, while multimodal ML showed AUPRC of 0.39 and 0.37, respectively. This approach demonstrated the potential of combining pathomics with transcriptomics, offering an interpretable framework for predicting key genetic mutations in PDAC.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102526"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000357","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In Pancreatic Ductal Adenocarcinoma (PDAC), predicting genetic mutations directly from histopathological images using Deep Learning can provide valuable insights. The combination of several omics can provide further knowledge on mechanisms underlying tumor biology. This study aimed at developing an explainable multimodal pipeline to predict genetic mutations for the KRAS, TP53, SMAD4, and CDKN2A genes, integrating pathomic features with transcriptomics from two independent datasets, the TCGA-PAAD, assumed as training set, and the CPTAC-PDA, as external validation set. Large and small configurations of CLAM (Clustering-constrained Attention Multiple Instance Learning) models were evaluated with three different feature extractors (ResNet50, UNI, and CONCH). RNA-seq data were pre-processed both conventionally and using three autoencoder architectures. The processed transcript panels were input into machine learning (ML) models for mutation classification. Attention maps and SHAP were employed, highlighting significant features from both data modalities. A fusion layer or a voting mechanism combined the outputs from pathomic and transcriptomic models, obtaining a multimodal prediction. Performance comparisons were assessed by Area Under Receiver Operating Characteristic (AUROC) and Precision-Recall (AUPRC) curves. On the validation set, for KRAS, multimodal ML achieved 0.92 of AUROC and 0.98 of AUPRC. For TP53, the multimodal voting model achieved 0.75 of AUROC and 0.85 of AUPRC. For SMAD4 and CDKN2A, transcriptomic ML models achieved AUROC of 0.71 and 0.65, while multimodal ML showed AUPRC of 0.39 and 0.37, respectively. This approach demonstrated the potential of combining pathomics with transcriptomics, offering an interpretable framework for predicting key genetic mutations in PDAC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信