{"title":"Byzantine fault-tolerant protocols for (n,f)-evacuation from a circle","authors":"Pourandokht Behrouz, Orestis Konstantinidis, Nikos Leonardos, Aris Pagourtzis, Ioannis Papaioannou, Marianna Spyrakou","doi":"10.1016/j.tcs.2025.115185","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we address the problem of <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>-evacuation on a circle, which involves evacuating <em>n</em> robots, with <em>f</em> of them being faulty, from a hidden exit located on the perimeter of a unit radius circle. The robots commence at the center of the circle and possess a speed of 1.</div><div>We introduce algorithms for both the Wireless and Face-to-Face communication models tolerating <em>f</em> Byzantine faults. We set constraints on <em>f</em> and we analyze the time requirements of these algorithms and we establish upper bounds on their performance.</div><div>We propose an algorithm for the Wireless communication model, proving the following upper bound<span><span><span><math><mi>E</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>≤</mo><mn>1</mn><mo>+</mo><mo>(</mo><mi>f</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>+</mo><mi>max</mi><mo></mo><mrow><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>H</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>}</mo></mrow></math></span></span></span> where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> is the time needed to evacuate two crucial groups of robots, during the execution of our algorithm.</div><div>For the Face-to-Face communication model we propose an algorithm and we prove an upper bound of<span><span><span><math><mi>E</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>≤</mo><mn>3</mn><mo>+</mo><mo>(</mo><mi>f</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>+</mo><munder><mi>max</mi><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></munder><mo></mo><mrow><mo>{</mo><mn>2</mn><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><mi>sin</mi><mo></mo><mrow><mo>(</mo><mfrac><mrow><mi>f</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow><mo>}</mo></mrow></math></span></span></span> where <em>k</em> is the number of conflicting accounts of the exit position.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1038 ","pages":"Article 115185"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525001239","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we address the problem of -evacuation on a circle, which involves evacuating n robots, with f of them being faulty, from a hidden exit located on the perimeter of a unit radius circle. The robots commence at the center of the circle and possess a speed of 1.
We introduce algorithms for both the Wireless and Face-to-Face communication models tolerating f Byzantine faults. We set constraints on f and we analyze the time requirements of these algorithms and we establish upper bounds on their performance.
We propose an algorithm for the Wireless communication model, proving the following upper bound where and is the time needed to evacuate two crucial groups of robots, during the execution of our algorithm.
For the Face-to-Face communication model we propose an algorithm and we prove an upper bound of where k is the number of conflicting accounts of the exit position.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.