Friedrichs' systems discretized with the DGM: domain decomposable model order reduction and Graph Neural Networks approximating vanishing viscosity solutions

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Francesco Romor , Davide Torlo , Gianluigi Rozza
{"title":"Friedrichs' systems discretized with the DGM: domain decomposable model order reduction and Graph Neural Networks approximating vanishing viscosity solutions","authors":"Francesco Romor ,&nbsp;Davide Torlo ,&nbsp;Gianluigi Rozza","doi":"10.1016/j.jcp.2025.113915","DOIUrl":null,"url":null,"abstract":"<div><div>Friedrichs' systems (FS) are symmetric positive linear systems of first-order partial differential equations (PDEs), which provide a unified framework for describing various elliptic, parabolic and hyperbolic semi-linear PDEs such as the linearized Euler equations of gas dynamics, the equations of compressible linear elasticity and the Dirac-Klein-Gordon system. FS were studied to approximate PDEs of mixed elliptic and hyperbolic type in the same domain. For this and other reasons, the discontinuous Galerkin method (DGM) represents the most common and versatile choice of approximation space for FS in the literature. We implement a distributed memory solver for stationary FS in <span>deal.II</span>. Our focus is model order reduction. Since FS model hyperbolic PDEs, they often suffer from a slow Kolmogorov <em>n</em>-width decay. We develop and combine two approaches to tackle this problem in the context of large-scale applications. The first is domain decomposable reduced-order models (DD-ROMs). We will show that the DGM offers a natural formulation of DD-ROMs, in particular regarding interface penalties, compared to the continuous finite element method. We also develop new repartitioning strategies to obtain more efficient local approximations of the solution manifold. The second approach involves shallow graph neural networks used to infer the limit of a succession of projection-based linear ROMs corresponding to lower viscosity constants: the heuristic behind concerns the development of a multi-fidelity super-resolution paradigm to mimic the mathematical convergence to vanishing viscosity solutions while exploiting to the most interpretable and certified projection-based DD-ROMs.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"531 ","pages":"Article 113915"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001986","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Friedrichs' systems (FS) are symmetric positive linear systems of first-order partial differential equations (PDEs), which provide a unified framework for describing various elliptic, parabolic and hyperbolic semi-linear PDEs such as the linearized Euler equations of gas dynamics, the equations of compressible linear elasticity and the Dirac-Klein-Gordon system. FS were studied to approximate PDEs of mixed elliptic and hyperbolic type in the same domain. For this and other reasons, the discontinuous Galerkin method (DGM) represents the most common and versatile choice of approximation space for FS in the literature. We implement a distributed memory solver for stationary FS in deal.II. Our focus is model order reduction. Since FS model hyperbolic PDEs, they often suffer from a slow Kolmogorov n-width decay. We develop and combine two approaches to tackle this problem in the context of large-scale applications. The first is domain decomposable reduced-order models (DD-ROMs). We will show that the DGM offers a natural formulation of DD-ROMs, in particular regarding interface penalties, compared to the continuous finite element method. We also develop new repartitioning strategies to obtain more efficient local approximations of the solution manifold. The second approach involves shallow graph neural networks used to infer the limit of a succession of projection-based linear ROMs corresponding to lower viscosity constants: the heuristic behind concerns the development of a multi-fidelity super-resolution paradigm to mimic the mathematical convergence to vanishing viscosity solutions while exploiting to the most interpretable and certified projection-based DD-ROMs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信