Prediction of sugar beet yield and quality parameters using Stacked-LSTM model with pre-harvest UAV time series data and meteorological factors

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Qing Wang , Ke Shao , Zhibo Cai , Yingpu Che , Haochong Chen , Shunfu Xiao , Ruili Wang , Yaling Liu , Baoguo Li , Yuntao Ma
{"title":"Prediction of sugar beet yield and quality parameters using Stacked-LSTM model with pre-harvest UAV time series data and meteorological factors","authors":"Qing Wang ,&nbsp;Ke Shao ,&nbsp;Zhibo Cai ,&nbsp;Yingpu Che ,&nbsp;Haochong Chen ,&nbsp;Shunfu Xiao ,&nbsp;Ruili Wang ,&nbsp;Yaling Liu ,&nbsp;Baoguo Li ,&nbsp;Yuntao Ma","doi":"10.1016/j.aiia.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate pre-harvest prediction of sugar beet yield is vital for effective agricultural management and decision-making. However, traditional methods are constrained by reliance on empirical knowledge, time-consuming processes, resource intensiveness, and spatial-temporal variability in prediction accuracy. This study presented a plot-level approach that leverages UAV technology and recurrent neural networks to provide field yield predictions within the same growing season, addressing a significant gap in previous research that often focuses on regional scale predictions relied on multi-year history datasets. End-of-season yield and quality parameters were forecasted using UAV-derived time series data and meteorological factors collected at three critical growth stages, providing a timely and practical tool for farm management. Two years of data covering 185 sugar beet varieties were used to train a developed stacked Long Short-Term Memory (LSTM) model, which was compared with traditional machine learning approaches. Incorporating fresh weight estimates of aboveground and root biomass as predictive factors significantly enhanced prediction accuracy. Optimal performance in prediction was observed when utilizing data from all three growth periods, with <em>R</em><sup>2</sup> values of 0.761 (rRMSE = 7.1 %) for sugar content, 0.531 (rRMSE = 22.5 %) for root yield, and 0.478 (rRMSE = 23.4 %) for sugar yield. Furthermore, combining data from the first two growth periods shows promising results for making the predictions earlier. Key predictive features identified through the Permutation Importance (PIMP) method provided insights into the main factors influencing yield. These findings underscore the potential of using UAV time-series data and recurrent neural networks for accurate pre-harvest yield prediction at the field scale, supporting timely and precise agricultural decisions.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 252-265"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate pre-harvest prediction of sugar beet yield is vital for effective agricultural management and decision-making. However, traditional methods are constrained by reliance on empirical knowledge, time-consuming processes, resource intensiveness, and spatial-temporal variability in prediction accuracy. This study presented a plot-level approach that leverages UAV technology and recurrent neural networks to provide field yield predictions within the same growing season, addressing a significant gap in previous research that often focuses on regional scale predictions relied on multi-year history datasets. End-of-season yield and quality parameters were forecasted using UAV-derived time series data and meteorological factors collected at three critical growth stages, providing a timely and practical tool for farm management. Two years of data covering 185 sugar beet varieties were used to train a developed stacked Long Short-Term Memory (LSTM) model, which was compared with traditional machine learning approaches. Incorporating fresh weight estimates of aboveground and root biomass as predictive factors significantly enhanced prediction accuracy. Optimal performance in prediction was observed when utilizing data from all three growth periods, with R2 values of 0.761 (rRMSE = 7.1 %) for sugar content, 0.531 (rRMSE = 22.5 %) for root yield, and 0.478 (rRMSE = 23.4 %) for sugar yield. Furthermore, combining data from the first two growth periods shows promising results for making the predictions earlier. Key predictive features identified through the Permutation Importance (PIMP) method provided insights into the main factors influencing yield. These findings underscore the potential of using UAV time-series data and recurrent neural networks for accurate pre-harvest yield prediction at the field scale, supporting timely and precise agricultural decisions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信