Prediction of sugar beet yield and quality parameters using Stacked-LSTM model with pre-harvest UAV time series data and meteorological factors

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Qing Wang , Ke Shao , Zhibo Cai , Yingpu Che , Haochong Chen , Shunfu Xiao , Ruili Wang , Yaling Liu , Baoguo Li , Yuntao Ma
{"title":"Prediction of sugar beet yield and quality parameters using Stacked-LSTM model with pre-harvest UAV time series data and meteorological factors","authors":"Qing Wang ,&nbsp;Ke Shao ,&nbsp;Zhibo Cai ,&nbsp;Yingpu Che ,&nbsp;Haochong Chen ,&nbsp;Shunfu Xiao ,&nbsp;Ruili Wang ,&nbsp;Yaling Liu ,&nbsp;Baoguo Li ,&nbsp;Yuntao Ma","doi":"10.1016/j.aiia.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate pre-harvest prediction of sugar beet yield is vital for effective agricultural management and decision-making. However, traditional methods are constrained by reliance on empirical knowledge, time-consuming processes, resource intensiveness, and spatial-temporal variability in prediction accuracy. This study presented a plot-level approach that leverages UAV technology and recurrent neural networks to provide field yield predictions within the same growing season, addressing a significant gap in previous research that often focuses on regional scale predictions relied on multi-year history datasets. End-of-season yield and quality parameters were forecasted using UAV-derived time series data and meteorological factors collected at three critical growth stages, providing a timely and practical tool for farm management. Two years of data covering 185 sugar beet varieties were used to train a developed stacked Long Short-Term Memory (LSTM) model, which was compared with traditional machine learning approaches. Incorporating fresh weight estimates of aboveground and root biomass as predictive factors significantly enhanced prediction accuracy. Optimal performance in prediction was observed when utilizing data from all three growth periods, with <em>R</em><sup>2</sup> values of 0.761 (rRMSE = 7.1 %) for sugar content, 0.531 (rRMSE = 22.5 %) for root yield, and 0.478 (rRMSE = 23.4 %) for sugar yield. Furthermore, combining data from the first two growth periods shows promising results for making the predictions earlier. Key predictive features identified through the Permutation Importance (PIMP) method provided insights into the main factors influencing yield. These findings underscore the potential of using UAV time-series data and recurrent neural networks for accurate pre-harvest yield prediction at the field scale, supporting timely and precise agricultural decisions.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 252-265"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate pre-harvest prediction of sugar beet yield is vital for effective agricultural management and decision-making. However, traditional methods are constrained by reliance on empirical knowledge, time-consuming processes, resource intensiveness, and spatial-temporal variability in prediction accuracy. This study presented a plot-level approach that leverages UAV technology and recurrent neural networks to provide field yield predictions within the same growing season, addressing a significant gap in previous research that often focuses on regional scale predictions relied on multi-year history datasets. End-of-season yield and quality parameters were forecasted using UAV-derived time series data and meteorological factors collected at three critical growth stages, providing a timely and practical tool for farm management. Two years of data covering 185 sugar beet varieties were used to train a developed stacked Long Short-Term Memory (LSTM) model, which was compared with traditional machine learning approaches. Incorporating fresh weight estimates of aboveground and root biomass as predictive factors significantly enhanced prediction accuracy. Optimal performance in prediction was observed when utilizing data from all three growth periods, with R2 values of 0.761 (rRMSE = 7.1 %) for sugar content, 0.531 (rRMSE = 22.5 %) for root yield, and 0.478 (rRMSE = 23.4 %) for sugar yield. Furthermore, combining data from the first two growth periods shows promising results for making the predictions earlier. Key predictive features identified through the Permutation Importance (PIMP) method provided insights into the main factors influencing yield. These findings underscore the potential of using UAV time-series data and recurrent neural networks for accurate pre-harvest yield prediction at the field scale, supporting timely and precise agricultural decisions.
基于采收前无人机时间序列数据和气象因子的叠置- lstm模型预测甜菜产量和品质参数
准确的收获前甜菜产量预测对有效的农业管理和决策至关重要。然而,传统的方法受到依赖经验知识、耗时、资源密集和预测精度时空变异性的限制。本研究提出了一种利用无人机技术和循环神经网络的地块级方法,在同一生长季节提供现场产量预测,解决了以往研究中依赖多年历史数据集的区域尺度预测的重大空白。利用无人机获取的三个关键生长阶段的时间序列数据和气象因子对季末产量和品质参数进行预测,为农场管理提供了及时实用的工具。研究人员使用了185个甜菜品种的两年数据来训练开发的堆叠长短期记忆(LSTM)模型,并将其与传统的机器学习方法进行了比较。将地上鲜重估算值和根系生物量作为预测因子显著提高了预测精度。利用所有三个生长期的数据进行预测的效果最佳,其中糖含量的R2值为0.761 (rRMSE = 7.1%),根产量的R2值为0.531 (rRMSE = 22.5%),糖产量的R2值为0.478 (rRMSE = 23.4%)。此外,结合前两个增长期的数据显示,提前做出预测的结果很有希望。通过排列重要性(PIMP)方法确定的关键预测特征可以深入了解影响产量的主要因素。这些发现强调了使用无人机时间序列数据和循环神经网络在田间规模上进行准确的收获前产量预测的潜力,支持及时和精确的农业决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信