Keap1-independent Nrf2 regulation: A novel therapeutic target for treating kidney disease

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiahui Zhang , Mingzhuo Zhang , Marc Tatar , Rujun Gong
{"title":"Keap1-independent Nrf2 regulation: A novel therapeutic target for treating kidney disease","authors":"Jiahui Zhang ,&nbsp;Mingzhuo Zhang ,&nbsp;Marc Tatar ,&nbsp;Rujun Gong","doi":"10.1016/j.redox.2025.103593","DOIUrl":null,"url":null,"abstract":"<div><div>The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant responses in mammals, where it plays a critical role in detoxification, maintaining cellular homeostasis, combating inflammation and fibrosis, and slowing disease progression. Kelch-like ECH-associated protein 1 (Keap1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, serves as a critical sensor of oxidative and electrophilic stress, regulating Nrf2 activity by sequestering it in the cytoplasm, leading to its proteasomal degradation and transcriptional repression. However, the clinical potential of targeting the Keap1-dependent Nrf2 regulatory pathway has been limited. This is evidenced by early postnatal lethality in Keap1 knockout mice, as well as significant adverse events after pharmacological blockade of Keap1 in human patients with Alport syndrome as well as in those with type 2 diabetes mellitus and chronic kidney disease. The exact underlying mechanisms remain elusive, but may involve non-specific and systemic activation of the Nrf2 antioxidant response in both injured and normal tissues. Beyond Keap1-dependent regulation, Nrf2 activity is modulated by Keap1-independent mechanisms, including transcriptional, epigenetic, and post-translational modifications. In particular, GSK3β has emerged as a critical convergence point for these diverse signaling pathways. Unlike Keap1-dependent regulation, GSK3β-mediated Keap1-independent Nrf2 regulation does not affect basal Nrf2 activity but modulates its response at a delayed/late phase of cellular stress. This allows fine-tuning of the inducibility, magnitude, and duration of the Nrf2 response specifically in stressed or injured tissues. As one of the most metabolically active organs, the kidney is a major source of production of reactive oxygen and nitrogen species and also a vulnerable organ to oxidative damage. Targeting the GSK3β-mediated Nrf2 regulatory pathway represents a promising new approach for the treatment of kidney disease.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"82 ","pages":"Article 103593"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725001065","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant responses in mammals, where it plays a critical role in detoxification, maintaining cellular homeostasis, combating inflammation and fibrosis, and slowing disease progression. Kelch-like ECH-associated protein 1 (Keap1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, serves as a critical sensor of oxidative and electrophilic stress, regulating Nrf2 activity by sequestering it in the cytoplasm, leading to its proteasomal degradation and transcriptional repression. However, the clinical potential of targeting the Keap1-dependent Nrf2 regulatory pathway has been limited. This is evidenced by early postnatal lethality in Keap1 knockout mice, as well as significant adverse events after pharmacological blockade of Keap1 in human patients with Alport syndrome as well as in those with type 2 diabetes mellitus and chronic kidney disease. The exact underlying mechanisms remain elusive, but may involve non-specific and systemic activation of the Nrf2 antioxidant response in both injured and normal tissues. Beyond Keap1-dependent regulation, Nrf2 activity is modulated by Keap1-independent mechanisms, including transcriptional, epigenetic, and post-translational modifications. In particular, GSK3β has emerged as a critical convergence point for these diverse signaling pathways. Unlike Keap1-dependent regulation, GSK3β-mediated Keap1-independent Nrf2 regulation does not affect basal Nrf2 activity but modulates its response at a delayed/late phase of cellular stress. This allows fine-tuning of the inducibility, magnitude, and duration of the Nrf2 response specifically in stressed or injured tissues. As one of the most metabolically active organs, the kidney is a major source of production of reactive oxygen and nitrogen species and also a vulnerable organ to oxidative damage. Targeting the GSK3β-mediated Nrf2 regulatory pathway represents a promising new approach for the treatment of kidney disease.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信