Metrical properties of Hurwitz continued fractions

IF 1.5 1区 数学 Q1 MATHEMATICS
Yann Bugeaud , Gerardo González Robert , Mumtaz Hussain
{"title":"Metrical properties of Hurwitz continued fractions","authors":"Yann Bugeaud ,&nbsp;Gerardo González Robert ,&nbsp;Mumtaz Hussain","doi":"10.1016/j.aim.2025.110208","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the geometry of Hurwitz continued fractions, a major tool in understanding the approximation properties of complex numbers by ratios of Gaussian integers. Based on a thorough study of the geometric properties of Hurwitz continued fractions, among other things, we determine that the space of valid sequences is not a closed set of sequences. Additionally, we establish a comprehensive metrical theory for Hurwitz continued fractions.</div><div>Let <span><math><mi>Φ</mi><mo>:</mo><mi>N</mi><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span> be any function. For any complex number <em>z</em> and <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>, let <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> denote the <em>n</em>th partial quotient in the Hurwitz continued fraction of <em>z</em>. One of the main results of this paper is the computation of the Hausdorff dimension of the set<span><span><span><math><mi>E</mi><mo>(</mo><mi>Φ</mi><mo>)</mo><mo>:</mo><mo>=</mo><mrow><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>Φ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mtext> for infinitely many </mtext><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></mrow><mo>.</mo></math></span></span></span> This study is a complex analog of a well-known result of Wang and Wu (2008) <span><span>[55]</span></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"468 ","pages":"Article 110208"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001069","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the geometry of Hurwitz continued fractions, a major tool in understanding the approximation properties of complex numbers by ratios of Gaussian integers. Based on a thorough study of the geometric properties of Hurwitz continued fractions, among other things, we determine that the space of valid sequences is not a closed set of sequences. Additionally, we establish a comprehensive metrical theory for Hurwitz continued fractions.
Let Φ:NR>0 be any function. For any complex number z and nN, let an(z) denote the nth partial quotient in the Hurwitz continued fraction of z. One of the main results of this paper is the computation of the Hausdorff dimension of the setE(Φ):={zC:|an(z)|Φ(n) for infinitely many nN}. This study is a complex analog of a well-known result of Wang and Wu (2008) [55].
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信