Fang Li , Xin Liu , Ning Bai , Ying Li , Minna Hou , Yali Hou , Yunting Liu , Xu Wang , Qi He , Jing Li
{"title":"Irisin attenuates liver fibrosis by regulating energy metabolism and HMGB1/β-catenin signaling in hepatic stellate cells","authors":"Fang Li , Xin Liu , Ning Bai , Ying Li , Minna Hou , Yali Hou , Yunting Liu , Xu Wang , Qi He , Jing Li","doi":"10.1016/j.ejphar.2025.177519","DOIUrl":null,"url":null,"abstract":"<div><div>Liver fibrosis is characterized by excessive extracellular matrix accumulation during chronic liver disease progression. Hepatic stellate cell (HSC) activation involves metabolic reprogramming, while both HMGB1 and β-catenin pathways have been implicated in HSC activation and liver fibrosis progression. Given irisin's established role in metabolic regulation and emerging evidence of its anti-fibrotic properties, we investigated its effects on HSC activation and liver fibrosis, focusing on potential metabolic regulation through the HMGB1/β-catenin pathway. Using both <em>in vitro</em> HSC-T6 cell culture and <em>in vivo</em> CCl<sub>4</sub>-induced rat liver fibrosis model, we analyzed irisin's impact on HSC metabolism and fibrosis progression. Our results demonstrated that irisin dose-dependently suppressed HSC-T6 cell viability and glycolytic metabolism, significantly reducing ATP levels, glucose consumption, and lactate production at concentrations of 80–100 nmol/L. Irisin treatment markedly inhibited HSC-T6 cell proliferation and migration while inducing cellular senescence, as evidenced by increased H3K9me3, γ-H2AX, P16, and P21 expression. Mechanistically, irisin systematically downregulated key glycolytic enzymes (HK2, PFK1, PKM2, LDHA) and modulated the HMGB1/β-catenin pathway by reducing both cytoplasmic HMGB1 expression and β-catenin nuclear translocation. In the CCl<sub>4</sub>-induced rat model, irisin treatment significantly ameliorated liver fibrosis, as evidenced by reduced collagen deposition and α-SMA expression, while improving liver function indicators and decreasing serum fibrosis markers (HA, PIIIP, HMGB1), showing therapeutic effects comparable to colchicine. These findings reveal irisin's anti-fibrotic effects through metabolic regulation and HMGB1/β-catenin pathway modulation, suggesting its potential as a therapeutic agent for liver fibrosis.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"998 ","pages":"Article 177519"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925002730","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver fibrosis is characterized by excessive extracellular matrix accumulation during chronic liver disease progression. Hepatic stellate cell (HSC) activation involves metabolic reprogramming, while both HMGB1 and β-catenin pathways have been implicated in HSC activation and liver fibrosis progression. Given irisin's established role in metabolic regulation and emerging evidence of its anti-fibrotic properties, we investigated its effects on HSC activation and liver fibrosis, focusing on potential metabolic regulation through the HMGB1/β-catenin pathway. Using both in vitro HSC-T6 cell culture and in vivo CCl4-induced rat liver fibrosis model, we analyzed irisin's impact on HSC metabolism and fibrosis progression. Our results demonstrated that irisin dose-dependently suppressed HSC-T6 cell viability and glycolytic metabolism, significantly reducing ATP levels, glucose consumption, and lactate production at concentrations of 80–100 nmol/L. Irisin treatment markedly inhibited HSC-T6 cell proliferation and migration while inducing cellular senescence, as evidenced by increased H3K9me3, γ-H2AX, P16, and P21 expression. Mechanistically, irisin systematically downregulated key glycolytic enzymes (HK2, PFK1, PKM2, LDHA) and modulated the HMGB1/β-catenin pathway by reducing both cytoplasmic HMGB1 expression and β-catenin nuclear translocation. In the CCl4-induced rat model, irisin treatment significantly ameliorated liver fibrosis, as evidenced by reduced collagen deposition and α-SMA expression, while improving liver function indicators and decreasing serum fibrosis markers (HA, PIIIP, HMGB1), showing therapeutic effects comparable to colchicine. These findings reveal irisin's anti-fibrotic effects through metabolic regulation and HMGB1/β-catenin pathway modulation, suggesting its potential as a therapeutic agent for liver fibrosis.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.