MAB-RSP: Data pricing based on Stackelberg game in MCS

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-03-12 DOI:10.1016/j.array.2025.100380
Yongjiao Sun, Xueyan Ma, Anrui Han
{"title":"MAB-RSP: Data pricing based on Stackelberg game in MCS","authors":"Yongjiao Sun,&nbsp;Xueyan Ma,&nbsp;Anrui Han","doi":"10.1016/j.array.2025.100380","DOIUrl":null,"url":null,"abstract":"<div><div>With the proliferation of mobile smart devices and wireless communication technologies, Mobile CrowdSensing (MCS) has emerged as a significant data collection method. MCS faces two key challenges: selecting high-quality data sellers with unknown reliability and determining fair compensation that addresses device wear and privacy risks. We introduce two novel contributions. First, the MAB-RS algorithm leverages multi-armed bandit reinforcement learning and a data freshness model to dynamically optimize seller recruitment, efficiently balancing exploration of unknown sellers and exploitation of high-quality ones. Second, the MAB-RSP employs a Stackelberg game framework, enabling platforms and sellers to collaboratively maximize profits through strategic pricing and participation incentives. Experiments demonstrate that the algorithm improves revenue while ensuring balanced benefits for all participants.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"26 ","pages":"Article 100380"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the proliferation of mobile smart devices and wireless communication technologies, Mobile CrowdSensing (MCS) has emerged as a significant data collection method. MCS faces two key challenges: selecting high-quality data sellers with unknown reliability and determining fair compensation that addresses device wear and privacy risks. We introduce two novel contributions. First, the MAB-RS algorithm leverages multi-armed bandit reinforcement learning and a data freshness model to dynamically optimize seller recruitment, efficiently balancing exploration of unknown sellers and exploitation of high-quality ones. Second, the MAB-RSP employs a Stackelberg game framework, enabling platforms and sellers to collaboratively maximize profits through strategic pricing and participation incentives. Experiments demonstrate that the algorithm improves revenue while ensuring balanced benefits for all participants.
基于Stackelberg博弈的MCS数据定价
随着移动智能设备和无线通信技术的普及,移动群体感知(MCS)已经成为一种重要的数据收集方法。MCS面临着两个关键挑战:选择可靠性未知的高质量数据卖家,以及确定公平的补偿,以解决设备磨损和隐私风险。我们介绍两项新的贡献。首先,MAB-RS算法利用多臂强盗强化学习和数据新鲜度模型来动态优化卖家招募,有效地平衡了对未知卖家的探索和对优质卖家的开发。其次,MAB-RSP采用了Stackelberg游戏框架,使平台和卖家能够通过战略定价和参与激励来实现利润最大化。实验表明,该算法在保证各方利益均衡的同时提高了收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信